
Hitchhikers guide to transparent, reproducible,
and collaborative computational science

Wolfram Barfuss

2024-04-24

Table of contents

1 Why this guide? 3
1.0.1 Science as amateur software development 3
1.0.2 This guide . 4
1.0.3 What do we want? . 5
1.0.4 Tools: How do we get it? . 5

2 Scholarly writing 6
2.1 Narrative text with images and equations . 6

2.1.1 Images . 6
2.1.2 Equations . 8

2.2 Cross-references . 9
2.2.1 Figures . 9
2.2.2 Sections . 9
2.2.3 Equations . 10
2.2.4 Footnotes . 10

2.3 Citations . 11
2.3.1 Bibliography files . 11
2.3.2 Citations syntax . 12

2.4 Document metadata . 13
2.5 Generating output . 13
2.6 References . 13

3 Computational writing 14
3.1 Basic example: predator-prey dynamics . 14
3.2 Quarto embeds . 16
3.3 Code reuse with nbdev . 17

4 Annex: Heavy computations 20

2

1 Why this guide?

1.0.1 Science as amateur software development

Science is one of humanity’s greatest inventions. Academia, on the other hand,
is not. It is remarkable how successful science has been, given the often chaotic
habits of scientists. In contrast to other fields, […] science as a profession is largely
unprofessional—apprentice scientists are taught less about how to work responsibly
than about how to earn promotions. This results in ubiquitous and costly errors.

Software development has become indispensable to scientific work. [But] it can
become even more useful by transferring some aspects of its professionalism, the
day-to-day tracking and back-tracking and testing that is especially part of dis-
tributed, open-source software development. Science, after all, aspires to be
distributed, open-source knowledge development. – Richard McElreath

3

1.0.2 This guide

In this guide, I want to outline my approach to science as amateur software develop-
ment. I am a computational social ecologist who focuses on developing theoretical models of
human-environment interactions. However, the tools and methods shown here should apply
to the broad range of computational sciences, which all develop models and analyze
data to some extent.

Transparency is required because all models are wrong. Our brains have limited capacity
to process the already limited data we receive from the complex world around us, so we simplify.
Most often, we do this subconsciously, resulting in a mental model. We use formal models –
computational and mathematical ones – to make the process of simplification and abstraction
a conscious effort. Since a model, by definition, can nor aims to be true, we should optimize the
model design and presentation for transparency to make the conscious modeling thought
process a collective one. Transparency enables reproducibility and collaboration.

4

https://yewtu.be/watch?v=zwRdO9_GGhY

If science is not reproducible, it is not science. However, the reproducibility crisis 1

shows that many scientific study results are difficult or impossible to reproduce. This under-
mines the credibility of scientific knowledge and can lead to costly and inefficient policies.

Collaboration is required because the world is too complex for any individual to do it
all by themselves. We need to be able to integrate different perspectives of one phenomenon.

Luckily, (open-source) software development has not only produced a set of modern software
tools to realize these principles. It also provides a range of cultural practices to enable the
continuous integration of knowledge collaboratively. We don’t need to invent new tools or
practices. We just need to be willing to learn. In that sense, this guide is a hitchhiker’s
guide. We don’t need to drive all by ourselves. We just have to find the right companions
(tools and practices) to make the journey worthwhile and enjoyable.

1.0.3 What do we want?

An integrated computational environment for development, analysis, and writing.

• Publications (as a PDF, on the web, with images)

– Cross-referencing
– Citations

• Execute, reuse, and document code
• Version control
• Unit tests
• Animations
• Presentations

1.0.4 Tools: How do we get it?

• Jupyter notebooks
• quarto
• nbdev
• Jupyter lab (extensions)
• git & github

Note

This is work in progress. More to come.

1Here is the footnote.

5

2 Scholarly writing

In this note, we will cover the basics of scholarly writing. That is the combination of a -
narrative in text form, - possibly including images, - with cross-references throughout the text,
- while giving attribution to other authors,

2.1 Narrative text with images and equations

Writing text is obvious and follows basic markdown syntax. More information about that is
in the Quarto documentation.

2.1.1 Images

To include images, standard markdown syntax works well

![Abstract Shape](graphics/drawing.svg)

6

https://quarto.org/docs/authoring/markdown-basics.html

Figure 2.1: Abstract Shape

I recommend working with vector graphics (.svg files). They do not require an additional
raw file, which keeps the project folder clean. Inkscape is a great open-source vector graphics
program.

Quarto offers more customization options to images, such as downscaling the image size or
specifying the figure alignment,

![Abstract Shape](graphics/drawing.svg){width=50%, fig-align="right"}

which results in

7

https://inkscape.org/

Figure 2.2: Small Abstract Shape

However, these additions to the standard markdown syntax are Quarto-specific, which get
rendered in the output files produced by Quarto, but not necessarily while displaying the raw
Jupyter notebook.

Note

By adopting a large-to-small width-to-length ratio for our raw images, such as 16-to-9,
we can prioritize transparency, collaboration, and reproducibility. This approach allows
us to cleanly display our Jupyter notebooks in other places, such as GitHub, NBViewer,
or Google Colab.

2.1.2 Equations

Equations follow standard LaTeX syntax, inline by $... $ or in full display by

$$... $$

For example, 𝐸 = 𝑚𝑐2, or

8

https://github.com/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb
https://nbviewer.org/github/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb
https://colab.research.google.com/github/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb

𝐸 = 𝑚𝑐2 (2.1)

Note

Sometimes, the JuptyerLab Quarto extension has problems rendering equations in my
setup. I haven’t understood the exact cause of this behavior yet. Reloading the python
environment did the trick (once). However, when using the LaTex align environment for
more complex equations, I couldn’t get the Quarto extension to display it correctly. To
get most of the other displaying features, I can recommend the MyST Jupyter extension
as an alternative.

2.2 Cross-references

Cross-references help readers navigate your document by providing numbered references
and hyperlinks to entities like figures and tables. Each entity needs a unique label,
e.g. #fig-element, to be cross-referenced.

2.2.1 Figures

Figure receive a label by, for example,

![Referenced Abstract Shape](graphics/drawing.svg){#fig-shape}

The #fig-shape label makes the figure referenceable.

See @fig-shape for an illustration.

See Figure 2.3 for an illustration.

2.2.2 Sections

To reference a section, add a #sec- identifier to any heading. For example:

See @sec-text for additional context.

See Section 2.1 for additional context.

9

https://github.com/executablebooks/jupyterlab-myst

Figure 2.3: Referenced Abstract Shape

2.2.3 Equations

To reference an equation, add a #eq- identifier to any display equation. For example:

$$
...
$$ {#eq-einstein}

See Equation 2.1 for additional context.

2.2.4 Footnotes

Footnotes can be specified using the following syntax:

Here is a footnote reference,[^1] and another.[^longnote]

[^1]: Here is the footnote.

[^longnote]: Here's one with multiple blocks.

10

Subsequent paragraphs are indented to show that they
belong to the previous footnote.

{ some.code }

The whole paragraph can be indented, or just the first
line. In this way, multi-paragraph footnotes work like
multi-paragraph list items.

This paragraph won't be part of the note, because it
isn't indented.

Here is a footnote reference,1 and another.2

This paragraph won’t be part of the note, because it isn’t indented.

Footnotes can be a preferable way to specify links to webpages 3 to ensure that people notice
and can follow the link, even if the output format is a printed PDF.

Warning

Note that the cross-referencing syntax is Quarto-specific and makes Jupyter notebooks
display less cleanly in other environments. But the intrusions are not huge (imo).

2.3 Citations

Citing other scholars’ work is a fundamental part of any scholarly written piece.

2.3.1 Bibliography files

Quarto supports bibliography files in a wide variety of formats. For example, add a bibliogra-
phy file to your document in the YAML metadata as follows,

1Here is the footnote.
2Here’s one with multiple blocks.

Subsequent paragraphs are indented to show that they belong to the previous footnote.

{ some.code }

The whole paragraph can be indented, or just the first line. In this way, multi-paragraph footnotes work
like multi-paragraph list items.

3https://quarto.org/

11

bibliography: references.bib

The file references.bib must be in the same folder as your Jupyter notebook. In our case it
contains the following,

!cat references.bib

@article{BarfussEtAl2020,
title = {Caring for the Future Can Turn Tragedy into Comedy for Long-Term Collective Action under Risk of Collapse},
author = {Barfuss, Wolfram and Donges, Jonathan F. and Vasconcelos, V{\'i}tor V. and Kurths, J{\"u}rgen and Levin, Simon A.},
year = {2020},
journal = {Proceedings of the National Academy of Sciences},
volume = {117},
number = {23},
pages = {12915--12922},
publisher = {Proceedings of the National Academy of Sciences},
doi = {10.1073/pnas.1916545117},
url = {https://www.pnas.org/doi/abs/10.1073/pnas.1916545117},
urldate = {2022-03-10},
copyright = {All rights reserved}

}

@article{Barfuss2022,
title = {Dynamical Systems as a Level of Cognitive Analysis of Multi-Agent Learning},
author = {Barfuss, Wolfram},
year = {2022},
journal = {Neural Computing and Applications},
volume = {34},
number = {3},
pages = {1653--1671},
issn = {1433-3058},
doi = {10.1007/s00521-021-06117-0},
url = {https://doi.org/10.1007/s00521-021-06117-0},
urldate = {2023-03-02},
copyright = {All rights reserved}

}

2.3.2 Citations syntax

Citations go inside square brackets and are separated by semicolons, e.g.,

12

very important finding [see @BarfussEtAl2020, pp. 2-3; also @Barfuss2022, Sec. 1]

very important finding (see Barfuss et al. 2020, 2–3; also Barfuss 2022, sec. 2)

2.4 Document metadata

Document details can be given via a so-called YAML frontmatter.

title: "Scholarly writing"
author:

- name: "Wolfram Barfuss"
- affiliation: "University of Bonn"

More information on the Quarto Documentation.

2.5 Generating output

To render this notebook as a standalone file we give it further metadata:

bibliography: references.bib
format:

pdf:
link-citations: true

Moreover, it must not be part of a project. So we copy it, render the copy, and the remove all
unnecessary copies.

!cp 002ScholarlyWriting.ipynb 002ScholarlyWriting_.ipynb
!quarto render 002ScholarlyWriting_.ipynb --to pdf
!mv 002ScholarlyWriting_.pdf __output/002ScholarlyWriting.pdf
!rm -r 002ScholarlyWriting_*

2.6 References

13

https://quarto.org/docs/authoring/front-matter.html

3 Computational writing

In the following, we will enrich the scholarly writing experience with computations.

import numpy as np
import matplotlib.pyplot as plt

3.1 Basic example: predator-prey dynamics

Let’s assume we want to study predator-prey dynamics in ecology. The predator-prey equa-
tions are a famous model showing that species population sizes do not have to be stable, even
in equilibrium. Instead, they can continuously oscillate.

Mathematically, we express the model as follows:

Let 𝑥𝑡 ∈ ℝ be the number of prey and 𝑦𝑡 ∈ ℝ the number of predators in the population at
time step 𝑡. They evolve according to

𝑥𝑡+1 − 𝑥𝑡 =∶ Δ𝑥 = 𝛼𝑥𝑡 − 𝛽𝑥𝑡𝑦𝑡 (3.1)
𝑦𝑡+1 − 𝑦𝑡 =∶ Δ𝑦 = 𝛾𝑦𝑡𝑥𝑡 − 𝛿𝑦𝑡 (3.2)

where the parameter 𝛼 represents the preys’ birth rate, 𝛽 the prey’s mortality rate, 𝛾 the
predator efficiency, and 𝛿 the predators’ death rate.

Right below the mathematical model, we define the computational model:

def predprey_model(prey_birth_rate,
prey_mortality,
predator_efficiency,
predator_death_rate,
initial_prey,
initial_predators,
time_length):

""" Discrete-time predator-prey model. """
x = -1 * np.ones(time_length)

14

y = -1 * np.ones(time_length)
x[0] = initial_prey
y[0] = initial_predators
for t in range(1, time_length):

x[t] = x[t-1] + prey_birth_rate * x[t-1]\
- prey_mortality * y[t-1]*x[t-1]

y[t] = y[t-1] + predator_efficiency * y[t-1]*x[t-1]\
- predator_death_rate * y[t-1]

return x, y

We test the model,

preys, predators = predprey_model(0.1, 0.1, 0.1, 0.01, 1.0, 1.0, 1000)

and portray the model output, make the Figure referenceable in by using the Quarto comment
commands

#| label: fig-modelrun
#| fig-cap: "An exemplary predator-prey model run"

plt.plot(preys, label="preys", color='blue')
plt.plot(predators, label="predators", color='orange')
plt.legend();

15

Figure 3.1: An exemplary predator-prey model run.

Figure 3.1 shows an exemplary predator-prey model run.

Note

This basic form of computational writing is the most transparency, collaboration, and
reproducibility friednly. This approach allows us to cleanly display our Jupyter notebooks
in other places, such as GitHub, NBViewer, or Google Colab.

However, often model code and analysis are too complex to be presented in a single notebook.
There a two ways to deal with this problem: Quarto embeds and reusing code written in a
notebook with nbdev.

3.2 Quarto embeds

Quarto lets you embed the output of another document with the embed shortcode. To do this,
simply provide the document path and block or cell identifier, e.g,

16

https://github.com/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb
https://nbviewer.org/github/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb
https://colab.research.google.com/github/wbarfuss/pyCRLD/blob/main/nbs/index.ipynb

{{< embed HeavyComputations.ipynb#fig-scatter-plot >}}

Figure 3.2

Figure 4.1 shows a heavy scatter plot.

Note

Quarto embeds can be a great and easy way to structure a project without using an addi-
tional tool. However, the Quarto embeds won’t show in any other Jupyter environment.

Another strategy is to reuse code written in a notebook with nbdev.

3.3 Code reuse with nbdev

This part makes use of the excellent nbdev Python package 1. nbdev provides a ready-to-
use ecosystem for creating software packages with Jupyter Notebooks, i.e., writing, testing,

1https://nbdev.fast.ai/

17

documenting, and distributing. We use it, for example, here 2. For our computational writing
experience, however, we resort to individual components of nbdev.

See nbdev’s getting-started guide 3 for how to install it.

One of the key features of nbdev is that it lets you export specific Jupyter Notebook cells
to a plain Python file. These Python files can then be easily imported into other Jupyter
Notebooks.

You only have to specify the name of Python module file to export to via

#|default_exp <name>

Then, you can a export a Juptyer Notebook cell by simply prepending

#|export

to it.

Important

To avoid a small conflict between Quarto and nbdev, make sure to add a space, , before
the nbdev directives #|default_exp <name> and #|export. See here for details.

… Shows an example

from _code.HeavyComputations import noisy_predprey_model

np.random.seed(42)

preys, predators = noisy_predprey_model(0.1, 0.1, 0.1, 0.01, 1.0, 1.0, 1000, 0.0)
plt.plot(preys, lw=3, ls='--', label="preys", color='blue', alpha=0.8)
plt.plot(predators, lw=3, ls='--', label="predators", color='orange', alpha=0.8)

for _ in range(35):
preys, predators = noisy_predprey_model(0.1, 0.1, 0.1, 0.01, 1.0, 1.0, 1000, 0.025)
plt.plot(preys, color='blue', alpha=0.1)
plt.plot(predators, color='orange', alpha=0.1)

plt.legend();

2https://wbarfuss.github.io/pyCRLD/ and https://github.com/wbarfuss/pyCRLD
3https://nbdev.fast.ai/getting_started.html

18

https://github.com/quarto-dev/quarto-cli/issues/3152

19

4 Annex: Heavy computations

Imports for the nbdev development environment
import nbdev

import numpy as np
import matplotlib.pyplot as plt

data = np.random.randn(2, 100)
plt.scatter(*data);

Figure 4.1

20

#| default_exp HeavyComputations

#| export
import numpy as np

#| export
def noisy_predprey_model(prey_birth_rate,

prey_mortality,
predator_efficiency,
predator_death_rate,
initial_prey,
initial_predators,
time_length,
noiselevel):

""" Discrete-time predator-prey model. """
x = -1 * np.ones(time_length)
y = -1 * np.ones(time_length)
x[0] = initial_prey
y[0] = initial_predators
for t in range(1, time_length):

x[t] = x[t-1] + prey_birth_rate * x[t-1]\
- prey_mortality * y[t-1]*x[t-1]

y[t] = y[t-1] + predator_efficiency * y[t-1]*x[t-1]\
- predator_death_rate * y[t-1]\
+ noiselevel * (0.5 - np.random.rand())

return x, y

np.random.seed(42)

preys, predators = noisy_predprey_model(0.1, 0.1, 0.1, 0.01, 1.0, 1.0, 1000, 0.0)
plt.plot(preys, lw=3, ls='--', label="preys", color='blue', alpha=0.8)
plt.plot(predators, lw=3, ls='--', label="predators", color='orange', alpha=0.8)

for _ in range(35):
preys, predators = noisy_predprey_model(0.1, 0.1, 0.1, 0.01, 1.0, 1.0, 1000,

0.025)

plt.plot(preys, color='blue', alpha=0.1)
plt.plot(predators, color='orange', alpha=0.1)

plt.legend();

21

nbdev.export.nb_export("HeavyComputations.ipynb", "_code")

Barfuss, Wolfram. 2022. “Dynamical Systems as a Level of Cognitive Analysis of Multi-Agent
Learning.” Neural Computing and Applications 34 (3): 1653–71. https://doi.org/10.1007/
s00521-021-06117-0.

Barfuss, Wolfram, Jonathan F. Donges, Vítor V. Vasconcelos, Jürgen Kurths, and Simon
A. Levin. 2020. “Caring for the Future Can Turn Tragedy into Comedy for Long-Term
Collective Action Under Risk of Collapse.” Proceedings of the National Academy of Sciences
117 (23): 12915–22. https://doi.org/10.1073/pnas.1916545117.

22

https://doi.org/10.1007/s00521-021-06117-0
https://doi.org/10.1007/s00521-021-06117-0
https://doi.org/10.1073/pnas.1916545117

	Why this guide?
	Science as amateur software development
	This guide
	What do we want?
	Tools: How do we get it?

	Scholarly writing
	Narrative text with images and equations
	Images
	Equations

	Cross-references
	Figures
	Sections
	Equations
	Footnotes

	Citations
	Bibliography files
	Citations syntax

	Document metadata
	Generating output
	References

	Computational writing
	Basic example: predator-prey dynamics
	Quarto embeds
	Code reuse with nbdev

	Annex: Heavy computations

