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1 Introduction

Collective cooperation – in which intelligent actors in complex environments seek ways to improve their
joint well-being – is critical for a sustainable future, yet unresolved. Mathematical models are essential
for moving forward with this challenge. Our perspective paper argues that building bridges between
CSS and MARL offers a more robust understanding of the drivers, mechanisms, and dynamics of
collective cooperation from intelligent actors in dynamic environments. Both fields complement each
other in their goals, methods, and scope.

This supplementary information presents a more detailed background on the literature (Chapter 2).
Furthermore, we give all the details regarding the collective reinforcement learning dynamics we employ
(Chapter 3) and how we applied it to create all complex phenomena presented in the main text
(Chapter 4 - Chapter 7). Chapter 8 contains all required simulation scripts.

Reproducibility

This supplementary information was created in a fully reproducible writing and computing environment
with the help of nbdev and quarto. If you are reading the PDF or web version of this document, you
can find the source code in form of Jupyter notebooks at https://github.com/wbarfuss/collective-
cooperative-intelligence.

To reproduce all simulations, create a new conda environment with the provided pythonenvironment.yml
file.

conda env create -f pythonenvironment.yml

This installs also the Collective Reinforcement Learning Dynamics in Python. They are provided by
a separate Python package, which is in its early stages of development.

You activate the environment with:

conda activate cocoin

Afterwards, you should be able to follow along and execute all notebooks.

If you have any feedback, questions or problems with code, please do not hesitate to open a Github
issue here: https://github.com/wbarfuss/collective-cooperative-intelligence/issues.
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2 Literature background

2.1 Complex Systems Science (CSS)

Complex systems are generally out of equilibrium with many interacting components, feedback, and
couplings between components and levels (e.g., Levin, 2002). Emergent, collective behavior at the
macro level is surprising and hard to predict. An extensive repertoire of strategies and interaction
types at the component level makes for multiple emergent patterns and functions at the macroscale–
the state of the art to date largely treats each pattern independently. Consequently, there is little
understanding of the overall degree of collectivity (Daniels et al., 2021). Power law and heavy-tailed
distributions can lead to consequential ‘black swan’ and second and third-order effects (De Marzo et al.,
2022). Some complex systems sit near a critical point at which small perturbations can cause a phase
transition or reconfiguration because of long-range correlations (Mora & Bialek, 2011), including in
finite, relatively small systems like many animal societies and human groups (Daniels et al., 2017).

CSS methods are diverse. Those most relevant to understanding emergence of cooperative collectives
include nonlinear dynamics to study temporal oscillations and couplings in time such as how individuals
synchronize their activities (Sarfati et al., 2021), stochastic differential equations to study how, for
example, noise influences transitions between disordered and ordered states (Jhawar et al., 2020),
approaches from statistical mechanics to study collective behavior in space, such as how swarms (Buhl
et al., 2006) and flocks choose trajectories (Bialek et al., 2012), game theory (Hofbauer & Sigmund,
1998; Nowak, 2006), network theory (Newman, 2003) to quantify interaction structure and how for
example individuals make decisions under the influence of others in uncertain environments (Kleshnina
et al., 2023), cellular automata (Wolfram, 1994) to gain insight from toy models about the relationship
between rule complexity and pattern formation, agent based modeling (Epstein & Axtell, 1996), the
physics of information to identify the mechanisms supporting information processing and quantify
their efficiency with the goal of understanding how energy and information processing interact to
shape collective effects (Kempes et al., 2017), and information theory to identify and quantify the
contribution of higher order interactions to macroscale effects (Rosas et al., 2019; Tekin et al., 2017,
2018), quantify overall degree of collectivity (Daniels et al., 2016), and to build unifying frameworks
leveraging ideas from predictive coding (Darriba & Waszak, 2018; Friston, 2018; Rao & Ballard, 1999),
active inference and the free-energy principle (Buckley et al., 2017), and the information theory of
individuality (D. Krakauer et al., 2020) for formalizing the role of uncertainty reduction (also called
surprise minimization (Heins et al., 2023)) in micro-macro relationships and entity formation and
evolution.

We expect information theoretic approaches emphasizing uncertainty reduction will be particularly
productive for informing the development of a ‘strategic statistical mechanics’ that brings together
powerful probabilistic approaches from statistical physics and information theory for deriving micro-
macro maps with logical principles from theoretical computer science and the study of inference to
capture robust and optimal design of how strategies interact in social circuits to support cooperation
at scale. For example, a recent paper on surprise minimization (Heins et al., 2023) makes substantial
progress in this direction. The authors develop a modeling framework to capture spatial collective
behavior with inference-capable agents. The agents can estimate hidden causes of their sensations
and adapt their position in space to minimize surprise (prediction error). The authors then study
the relationship between individual inference and the emergence of collective states like cohesion and
milling. Next steps include 1) exploring the pros and cons of active inference vs. MARL for encoding
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cognition into agents, 2) combining this approach with inductive game theory (probabilistic strategies
are empirically grounded and extracted from time series) (DeDeo et al., 2010; D. C. Krakauer et
al., 2010), and 3) studying how collective states and their transitions are computed from the social
circuits (Brush et al., 2018; DeDeo et al., 2010; Ramos-Fernandez et al., 2020) that form as strategies
are updated and consolidate into slow variables, which reduce social uncertainty and permit accelerated
rates of adaptation (Flack, 2017). With these extensions, it should be possible to begin to deduce the
organizational and algorithmic principles underlying the emergence of micro-macro maps in collective
information processing systems through feed-forward effects and downward causation. These principles
will likely inform the conditions under which collective, cooperative intelligence emerges at scale.

It is worth noting that in the models developed in the surprise minimization, inductive game the-
ory, and some of the collective computation work described above, individuals are tracked, making
these models, in a sense, agent-based models. However, these approaches distinguish themselves by
incorporating agents that model the world in a restricted but cognitively principled manner or by pa-
rameterizing the models using probabilistic strategies obtained directly from data and by leveraging
the rigor of powerful probabilistic modeling frameworks in statistical physics or dynamical systems
traditions. In the more conventional agent-based modeling community, there have also been attempts
to develop a more rigorous axiomatic approach, e.g., based on symmetries and bifurcation theory
(Franci et al., 2022; Park et al., 2021) and game theory and control (Marden & Shamma, 2018).

Work within the game theory and cultural evolution CSS sub-communities has made strides in under-
standing the social and cultural dynamics resulting from interacting boundedly rational agents with
a finite computational budget. This work focuses on social and cultural learning mechanisms that
allow agents to improve their behavior over time (Arthur, 1994, 2014; Holland & Miller, 1991). Game
theoretic models in this tradition aim to explain emerging cooperation from simple yet plausible mech-
anisms. For example, the famous strategy tit-for-tat, which merely reciprocates what the opponent
did in the previous turn, is surprisingly successful against much more complicated strategies (Axelrod
& Hamilton, 1981). Its success can be attributed to its ability to control payoffs, ensuring that it
receives the same score as the opponent, regardless of the complexity of the opponent’s strategy. The
“zero-determinant” strategies later discovered by Press & Dyson (2012) provide a vast generalization
of this phenomenon, allowing for extortion and generosity, in addition to more equitable relationships
like that of tit-for-tat. These strategies have also encouraged a more geometric view of behavior in
CSS (Hilbe, Chatterjee, et al., 2018), moving away from purely mechanistic descriptions.

An unsatisfactory facet of many of these game theoretic and cultural and social evolution models is
that “cooperation” is based on an atomic action with the property that more cooperation translates to
better social welfare. This interchangeability is likely part of the reason for the widespread focus on
mechanisms for increasing the level of cooperation within a system. However, even for the most basic
model of a conflict of interest, the repeated Prisoner’s Dilemma, it can be the case that high levels
of “cooperation” are suboptimal for individuals and the collective, e.g., when agents are better off
alternating “cooperation” and “defection” over time (relative to always cooperating) (McAvoy et al.,
2022). Along these lines, nonlinearities produce counter-intuitive or hard-to-predict dynamics, mean-
ing that it is essential to consider not only the level of cooperation but also the specific collective states
or social outcomes that emerge from alternative strategic configurations and game structures. With
their simplifying assumptions, these approaches are suitable for gaining insight into null expectations
for baseline conditions but are more limited in utility when tackling cooperation at scale in complex
environments composed of cognitively complex, error-prone agents (McNamara, 2013).

Humans routinely deviate from the behavior predicted by the economic model of Homo economicus
(Camerer, 2011). Yet, they are also more sophisticated than assumed in many simple evolutionary
game theory models. They are capable of foresight, have a theory of mind, make inferences about
their environment, and can adapt their behavior correspondingly. For example, in the most common
evolutionary game theory models, individuals from a large population are randomly matched with
other population members to play a static game. Those individuals who are more successful (because
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they employ better strategies) are more likely to be imitated. Imitation-based models are most appro-
priate when interactions are symmetric in the sense that individuals coincide in their feasible actions
and payoffs. However, the paradigm is more challenging to motivate among heterogeneous and diverse
actors and when behaviors cannot be observed directly and must be inferred before they are imitated.
Moreover, extending this paradigm to account for other forms of cognition that intelligent individuals
typically employ when revising their strategies is not straightforward. Finally, the act of imitation
itself may be learned and, therefore, subject to cognitive constraints and learning dynamics (Team et
al., 2022).

There is a clear interest in adapting game theoretic and cultural evolution models to accommodate
these nuances (Hauser et al., 2019; Hilbe, Šimsa, et al., 2018; McNamara et al., 2021; X. Wang &
Fu, 2020). As with the uncertainty reduction and collective computation approaches discussed above,
considering how MARL could inform such models has great potential to unleash novel ways of modeling
complex systems to tackle the challenges of collective cooperation in more complex settings.

2.2 Multi-Agent Reinforcement Learning (MARL)

In a typical MARL setting, each agent observes (part of) the current state of the environment, then
takes an action, after which they observe (part of) the new state of the environment and are provided
with a reward indicating how desirable the previous “state-action-state” transition was. Over time,
the agents update their strategies (a mapping from observation histories to probability distributions
over their action space) to increase the long-term amount of reward they receive (Busoniu et al.,
2008). In this work, we employ a broad definition of reinforcement learning (RL), including various
individual-based update mechanisms. However, we exclude strategy update processes based on social
reward comparisons, such as typical evolution models and explicit social learning. Eventually, we
are interested in how processes, such as social learning, opinion formation, and collective action, can
emerge from individual learning agents.

Modern MARL is inspired by work in several fields, including neuroscience, psychology, economics,
and machine learning (Bush & Mosteller, 1951; Cross, 1973; Dayan & Niv, 2008; Erev & Roth, 1998;
Fudenberg & Levine, 1998; Roth & Erev, 1995; Sutton & Barto, 2018). For example, the commonly
used idea of temporal-difference learning is based upon reward-prediction errors, common to humans,
other animals, and machines (Botvinick et al., 2020; Gunawardena, 2022; Schultz et al., 1997). In
recent years, these traditional ideas have been combined with advances in machine learning – in
particular, deep learning – to produce spectacular successes in various domains (Berner et al., 2019;
Silver et al., 2016; Vinyals et al., 2019).

Studies of cooperation in MARL fall under the umbrella of Cooperative AI (Dafoe et al., 2021). They
can be divided based on whether the underlying game is fully cooperative (i.e., where all agents share
the same goal) or mixed-sum (as opposed to zero-sum, which describes fully competitive situations).
MARL as a field does not have a unique goal (Shoham et al., 2007). For example, some works aim to
obtain game-theoretic equilibria via MARL, while others ask which learning rules are in equilibrium
with one another in a specific environment. Despite this variety, the overarching aim of Cooperative
AI is to improve the cooperative capabilities of AI systems, increasing joint welfare by prescribing how
agents should (learn to) act. Such learning algorithms should ideally generalize to novel situations
and scale to high-dimensional environments. A vital advantage of the MARL paradigm is that it can
easily accommodate heterogeneous actors. Extending machine learning interpretability techniques to
MARL is an ongoing effort to advance the understanding of MARL systems (Grupen et al., 2022;
Lovering et al., 2022; McGrath et al., 2022).

Methodologically, the focus often lies in designing novel algorithmic features to improve the coopera-
tiveness of RL algorithms in large-scale environments. For example, algorithms may be equipped with
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abilities, such as sending each other messages (Foerster et al., 2016), making commitments (Christof-
fersen et al., 2022; Hughes et al., 2020), or transferring rewards to others (Lupu & Precup, 2020; W.
Z. Wang et al., 2021). Algorithms are evaluated for their ability to produce agents and multi-agent
systems that can generalize, i.e., perform well under conditions they never saw during training, such
as situations where they must interact with unfamiliar AI social partners (Leibo et al., 2021; Stone
et al., 2010) or humans (Carroll et al., 2019; (FAIR)† et al., 2022; Strouse et al., 2021). Measuring
generalization to a fixed set of test scenarios allows researchers to compare the performance of MARL
algorithms to one another despite incompatibilities in their training. In contrast to CSS studies, co-
operation is typically not an available action to choose from. Instead, implementing a cooperative
strategy must be learned from scratch (Leibo et al., 2017), and performance is measured by total
social welfare.

However, MARL simulation studies on their own are challenging to use to obtain analytically reli-
able insights into how collective cooperation emerges from complex human and machine behavior in
dynamic environments. They often require significant computational resources, while the space to
explore suffers from the curse of dimensionality. Moreover, they are typically highly stochastic, and
results can be difficult to interpret (Hernandez-Leal et al., 2019). We believe that a unified approach
that combines approaches from CSS and MARL could fill this gap.

2.3 Examplary works on the learning dynamics of cooperation

The study of cooperation has not been at the center of Collective Reinforcement Learning Dynamics
(CRLD) studies. Here we list some notable examples from mathematical biology and sociology.

• L. Panait, K. Tuyls, S. Luke, Theoretical advantages of lenient learners: An evolutionary game
theoretic perspective. J. Mach. Learn. Res. 9, 423–457 (2008).

• S. S. Izquierdo, L. R. Izquierdo, N. M. Gotts, Reinforcement learning dynamics in social dilem-
mas. J. Artif. Soc. Soc. Simul. 11, 1 (2008).

• M. Wunder, M. L. Littman, M. Babes, Classes of multiagent Q-learning dynamics with epsilon-
greedy exploration in ICML (2010).

• N. Masuda, M. Nakamura, Numerical analysis of a reinforcement learning model with the dy-
namic aspiration level in the iterated Prisoner’s dilemma. J. Theor. Biol. 278, 55–62 (2011).

• S. Tanabe, N. Masuda, Evolution of cooperation facilitated by reinforcement learning with adap-
tive aspiration levels. J. Theor. Biol. 293, 151–160 (2012).

• T. Ezaki, Y. Horita, M. Takezawa, N. Masuda, Reinforcement learning explains conditional
cooperation and its moody cousin. PLoS Comput. Biol. 12, e1005034 (2016).

• S. Dridi, E. Akçay, Learning to cooperate: The evolution of social rewards in repeated interac-
tions. Am. Nat. 191, 58–73 (2018).

• O. Leimar, J. M. McNamara, Learning leads to bounded rationality and the evolution of cognitive
bias in public goods games. Sci. Rep. 9, 16319 (2019).

• W. Barfuss, J. F. Donges, V. V. Vasconcelos, J. Kurths, S. A. Levin, Caring for the future can
turn tragedy into comedy for long-term collective action under risk of collapse. Proc. Natl.
Acad. Sci. U.S.A. 117, 12915– 12922 (2020).

• W. Z. Wang et al., “Emergent prosociality in multi-agent games through gifting” in Twenty-Ninth
International Joint Conference on Artificial Intelligence (2021), vol. 1, pp. 434–442.

• L. Wang et al., Lévy noise promotes cooperation in the Prisoner’s dilemma game with reinforce-
ment learning. Nonlinear Dyn. 108, 1837–1845 (2022).

• W. Barfuss, J. M. Meylahn, Intrinsic fluctuations of reinforcement learning promote cooperation.
Sci. Rep. 13, 1309 (2023).
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2.4 On cooperation and social dilemmas

In CSS, cooperation is frequently defined mechanistically. A cooperative act might involve colluding
with a co-conspirator to remain quiet under interrogation (Poundstone, 2011), paying a cost to provide
a benefit to another (e.g., measured in currency, time, or reproductive success) (Sigmund, 2010), or
provisioning a public good or resource (Fehr & Gächter, 2000; Ostrom et al., 1992). Game theory
allows such a behavior to be modeled using abstract payoffs. Dawes (1980) summarizes a social
dilemma among 𝑁 agents, each with two atomic actions, 𝐶 (‘cooperate’) or 𝐷 (‘defect’), as follows:

• (i) the payoff when all cooperate exceeds that when all defect and
• (ii) regardless of the composition of the group, a cooperator can always improve their own payoff

by switching to defection.

A simple example is a prisoner’s dilemma, which takes place in a collective of 𝑁 = 2 agents. With
payoffs defined by the matrix

C D
C 𝑅 𝑆
D 𝑇 𝑃

(2.1)

a social dilemma requires 𝑇 > 𝑅 > 𝑃 > 𝑆, which is the definition of a prisoner’s dilemma (Axelrod,
1984).

Cooperation becomes a graded quantity when a social dilemma is repeated, although it is still based on
(atomic) cooperative actions in each round. As Leibo et al. (2017) note, what constitutes cooperation
in spatially and/or temporally extended environments is more complicated and cannot determined
using just reduction to a prisoner’s dilemma via empirical game-theoretic analysis (EGTA). EGTA is
an approach to game theory that combines expert modeling with empirical data of gameplay. High-
dimensional game models are reduced to so-called meta-games via a small set of heuristic strategies.
The meta-game, or empirical game, is a simplified model of the high-dimensional game that is used
to gain an improved qualitative understanding of the complex multi-agent interaction (Tuyls et al.,
2019).

Avoiding mechanistic considerations altogether, a useful way of thinking about cooperation is in terms
of how a collective can jointly achieve higher payoffs, particularly when individual agents cannot
force such outcomes. Suppose that the outcome 𝑟∗ ∈ ℝ𝑁 is supported in Nash equilibrium. By the
definition of a Nash equilibrium, no agent can improve its payoff through unilateral deviations in its
policy. Therefore, if 𝑟 ∈ ℝ𝑁 is another outcome for which 𝑟𝑖 ⩾ 𝑟∗

𝑖 for all 𝑖 = 1, … , 𝑁 , with at least one
inequality strict, then no agent that would strictly benefit when the collective moves from 𝑟∗ to 𝑟 can
force this outcome, even though all agents would be at least as well off in 𝑟 as in 𝑟∗. Doing so is said
to require ‘cooperation’ (Cohen, 1998).

Thinking of cooperation in this way hearkens back the notion of a social dilemma. If (𝐷, 𝐷) is a
Nash equilibrium, then 𝑃 > 𝑆. Neither (𝐶, 𝐷) nor (𝐷, 𝐶) can Pareto-dominate (𝐷, 𝐷) due to this
inequality, so for ‘cooperation’ to exist it must be the case that 𝑅 > 𝑃 . One possibility for the final
payoff is that 𝑇 ⩽ 𝑅, in which case (𝐶, 𝐶) is also a Nash equilibrium. Such is the case in the stag hunt
game (Skyrms, 2004). Although this situation describes an interaction in which social welfare can be
improved via cooperation, it is not strictly a social dilemma by the definition we used above, because
the incentives of the individuals and the pair are not opposing. Rather, it represents an equilibrium
selection problem. If, 𝑇 > 𝑅 instead, then 𝑇 > 𝑅 > 𝑃 > 𝑆, the defining inequalities of a prisoner’s
dilemma.

Importantly, the Pareto-dominated outcome (𝑟∗ above) need not be supported in Nash equilibrium
in order to define a relevant notion of cooperation. Instead, one might impose the condition that
there exists no sequence of unilateral, individually-rational deviations leading the outcome from 𝑟∗ to
an outcome that Pareto-dominates 𝑟∗. For the game depicted in Equation 2.1, this condition allows
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𝑆 ⩾ 𝑃 as long as 𝑇 > 𝑅. Such is the case in the snowdrift game (Sugden, 2004), in which two
drivers are stuck on either side of a snowdrift blocking the road and must decide on who clears it. In
contrast to the prisoner’s dilemma, a driver is still better off cooperating (clearing the snowdrift) even
when the other driver does nothing. One would also prefer to have the co-player do all of the clearing
than to collaborate. A simple example in which ‘cooperation’ does not exist–even under this relaxed
definition–is the harmony game (Hauert, 2002), which satisfies 𝑅 > 𝑇 > 𝑆 > 𝑃 and possesses the
property that the unique Nash equilbrium, (𝐶, 𝐶), is also Pareto-efficient.

The prisoner’s dilemma, and more generally the definition of Dawes (1980), characterize ‘strict’ social
dilemmas. There are also ‘weaker’ social dilemmas describing conflicts of interest to lesser degrees.
Again using the game in Equation 2.1, Hauert et al. (2006) stipulate that a weak social dilemma
should satisfy

• (i) 𝑅 > 𝑃 ;
• (ii) 𝑇 > 𝑆; and
• (iii) 𝑅 > 𝑆 and 𝑇 > 𝑃 .

The intuition behind these conditions is that (i) the payoff for mutual cooperation should exceed that
of mutual defection; (ii) in mixed groups, the payoff to defectors should exceed that of cooperators;
and (iii) regardless of what action a focal agent takes, they are better off when the co-player cooperates
than when the co-player defects. The harmony game satisfies these inequalities, so it is considered a
weak social dilemma despite the fact that it has no notion of ‘cooperation’ according to the definition of
a ‘strict’ social dilemma. In addition to the prisoner’s dilemma and the harmony game, the remaining
two weak social dilemmas are the snowdrift and stag hunt games. As one might expect, the behavior
of a weak social dilemma in CSS depends on which of these classes of games it falls under (Hauert &
Doebeli, 2004), rather than just the fact that it’s a weak social dilemma.

However, even in strict social dilemmas, we caution that the presence of alternative actions can
destabilize conflicts of interest. For example, suppose that in addition to the actions 𝐶 and 𝐷 in
a prisoner’s dilemma, each player can take action 𝐺, which is interpreted as avoiding the prisoner’s
dilemma and instead collecting a pot of gold (at no cost). If both players have separate pots of gold
available to collect and the value of this gold exceeds all of the prisoner’s dilemma payoffs, then the
unique Nash equilibrium of this augmented game is (𝐺, 𝐺), which is also Pareto-efficient. Like in
the harmony game, there is no strict notion of ‘cooperation’ in the sense of Pareto dominance. Most
importantly, there is no conflict of interest and thus no strict social dilemma. It is irrelevant that there
are options 𝐶 and 𝐷 such that 𝑇 > 𝑅 > 𝑃 > 𝑆; this ‘embedded’ game is merely a decoy. Only when
the action 𝐺 is unavailable or unknown would the agents view this interaction as a social dilemma. In
this sense, social dilemmas need not be preserved upon inclusion into larger games. In this example, one
can easily recognize the option 𝐺 as trivializing the game, but in realistic applications, especially those
involving EGTA, it might be entirely unclear whether there are true conflicts of interest. Intriguingly,
the augmented game described above could still be considered a sequential social dilemma (Leibo et
al., 2017), owing to the fact that the reference policies representing cooperation and defection can be
chosen freely (and thus can represent policies in a smaller, embedded game).

Along these lines, the reduction to matrix games via EGTA could result in too much averaging with
respect to social dilemmas. One might instead map a stochastic game not to a matrix game but to a
down-sampled stochastic game with a smaller number of ‘salient’ states. A simple example would be
when two agents interact in a grid world, with two colors distributed throughout the grid according
to some distribution. The two players drift throughout the space via independent, unbiased random
walks. When they appear on neighboring tiles, they play one of two matrix games, a prisoner’s
dilemma or a harmony game, depending on whether the tiles have the same or different colors. There
are then three relevant matrix games: the two played when on neighboring tiles and one ‘null’ game
in which rewards are zero when neighbors on non-neighboring tiles. While one may view this game
as having a large state space based on the agents’ positions on the grid, this scenario can also be
modeled as a three-state game whose transitions are governed by a hidden Markov model (due to the
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structure of the grid and configuration of its colors). Nonetheless, by averaging appropriately, one
might expect to obtain a useful approximation via a stochastic game with just three states. It is an
open question whether further reduction to a matrix game would wash out important artifacts of this
spatially-extended game.

Regarding cooperation and the goals of CSS, one (rather misleading) aspect of CSS models that
could be informed better by the goals of MARL is the fact that social welfare, even in strict social
dilemmas, need not be a monotonic function of the level of cooperation. The goal should not always
be ‘more cooperation’ in a mechanistic sense. In the prisoner’s dilemma, many studies in CSS make
the simplifying assumption that 𝑅 > (𝑆 + 𝑇 ) /2, which implies that a socially efficient outcome can
be attained by full mutual cooperation. However, there are also prisoner’s dilemmas for which 𝑅 <
(𝑆 + 𝑇 ) /2, in which case both agents can do better by agreeing on a strategy of alternation: one agent
cooperates in even time steps only, while the other cooperates in odd time steps only. Moving from the
mutually cooperative outcome of (𝑅, 𝑅) to the Pareto-dominant outcome of ((𝑆 + 𝑇 ) /2, (𝑆 + 𝑇 ) /2)
requires ‘cooperation’, despite the fact that the latter involves a lower level of the atomic action
‘cooperate’ than the former. Thus, what constitutes a cooperative strategy in a temporally extended
social dilemma might be decoupled from what constitutes a cooperative action in the underlying
stage game, an observation that has not fully penetrated CSS (McAvoy et al., 2022) despite being
understood in MARL (Leibo et al., 2017).

In summary, what constitutes ‘cooperation’ depends on the context. In both CSS and MARL, seem-
ingly isolated systems of agents can involve externalities that affect how an interaction is charac-
terized/understood. If a cooperative social dilemma is actually a zero-sum game among 𝑁 players
and the environment, with the environment getting depleted as the social welfare increases, then the
‘goals’ in such an environment are ambiguous. Agents might also transition between such states and
those involving the possibility of true surpluses. Complicating matters further, agents could transition
among states involving different numbers of agents, including those with only a single agent and the
environment. In turn, an agent can reasonably have many different conceptions of what ‘cooperation’
means, even on short timescales. Rolling such ephemeral interactions into ‘cooperative strategies’ is
only more complicated.

10



3 Framework

3.1 Multi-agent environment interface (MAEi)

Figure 3.1: Multi-Agent Environment Interface (MAEi)

The basis for the learning dynamics is the multi-agent environment interface (MAEi) (Figure 3.1),
which itself is based in its most basic form on the formal framework of stochastic games, also known
as Markov games (Littman, 1994), which consist of the elements ⟨𝑁, 𝒮, 𝒜, 𝑇 , 𝑅⟩.
In an MAEi, 𝑁 ∈ ℕ agents reside in an environment of 𝑍 ∈ ℕ states 𝒮 = (𝑆1, … , 𝑆𝑍). In each state
𝑠, each agent 𝑖 ∈ {1, … , 𝑁} has a maximum of 𝑀 ∈ ℕ available actions 𝒜𝑖 = (𝐴𝑖

1, … , 𝐴𝑖
𝑀) to choose

from. 𝒜 = ⨂𝑖 𝒜𝑖 is the joint-action set where ⨂𝑖 denotes the cartesian product over the sets indexed
by 𝑖. Agents choose their actions simultaneously. A joint action is denoted by 𝑎 = (𝑎1, … , 𝑎𝑁) ∈ 𝒜.
With 𝑎−𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑁) we denote the joint action except agent 𝑖’s, and we write the
joint action in which agent 𝑖 chooses 𝑎𝑖 and all other agents choose 𝑎−𝑖 as 𝑎𝑖𝑎−𝑖. We chose an equal
number of actions for all states and agents out of notational convenience.

The transition function 𝑇 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1] determines the probabilistic state change. 𝑇 (𝑠, 𝑎, 𝑠′) is
the transition probability from current state 𝑠 to next state 𝑠′ under joint action 𝑎. Throughout this
work, we restrict ourselves to ergodic environments without absorbing states.

The reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ𝑁 maps the triple of current state 𝑠, joint action 𝑎 and next
state 𝑠′ to an immediate reward scalar for each agent. 𝑅𝑖(𝑠, 𝑎, 𝑠′) is the reward agent 𝑖 receives. Note
that the reward function is often defined as depending only on the current state and joint action,
𝑅𝑖(𝑠, 𝑎). Our formulation maps onto this variant by averaging out the transition probabilities towards
the next state according to 𝑅𝑖(𝑠, 𝑎) = ∑𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′)𝑅𝑖(𝑠, 𝑎, 𝑠′).
In principle, agents could condition their probabilities of choosing action on the entire history of past
play. However, doing so is not only cognitively demanding. It also requires that agents observe all
other agents’ actions. Therefore, we focus our analysis on simple, so-called Markov strategies, with
which agents choose their actions based only on the current state: 𝑋𝑖 ∶ 𝒮𝑖 × 𝒜𝑖 → [0, 1]. 𝑋𝑖(𝑠, 𝑎𝑖) is
the probability that agent 𝑖 chooses action 𝑎𝑖 given the environment is in state 𝑠. We denote the joint
strategy by 𝑋 = 𝑋(𝑠, 𝑎) = ⨂𝑖 𝑋𝑖(𝑠, 𝑎𝑖) ∶ 𝒮 × 𝒜 → [0, 1]𝑁 .
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3.2 Ecological Tipping Environment

We illustrate an application of the multi-agent environment interface by specifying a concrete envi-
ronment that allows studying the prospects of collective action under environmental tipping elements
(Barfuss et al., 2020).

Figure 3.2: Ecological Tipping Environment

It is available in the Python package via:

from pyCRLD.Environments.EcologicalPublicGood import EcologicalPublicGood as EPG
env = EPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01)

The environmental state set consists of two states, a prosperous and a degraded one, 𝒮 = {g, p}.

env.Sset

['g', 'p']

In each state 𝑠 ∈ 𝒮, each agent 𝑖 ∈ {1, … , 𝑁} can choose from their action set between either
cooperation or defection, 𝒜𝑖 = {c, d}.

env.Aset

[['c', 'd'], ['c', 'd']]

We denote the number of cooperating (defecting) agents by 𝑁c (𝑁d = 𝑁 − 𝑁c).

A collapse from the prosperous state to the degraded state occurs with transition probability,

𝑇 (p, 𝑎, g) = 𝑁d
𝑁 𝑞𝑐,

with 𝑞𝑐 ∈ [0, 1] being the collapse leverage parameter, indicating how much impact a defecting agent ex-
erts on the environment. Thus, the environment remains within the prosperous state with probability,
𝑇 (p, 𝑎, p) = 1 − 𝑇 (p, 𝑎, g).
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In the degraded state, we set the recovery to occur with probability,

𝑇 (g, 𝑎, p) = 𝑞𝑟,

independent of the agents’ actions. The parameter 𝑞𝑟 sets the recovery probability, and the probability
that the environment remains degraded is, thus, 𝑇 (g, 𝑎, g) = 1 − 𝑇 (g, 𝑎, p).

env.T.round(4)

array([[[[0.99, 0.01],
[0.99, 0.01]],

[[0.99, 0.01],
[0.99, 0.01]]],

[[[0. , 1. ],
[0.1 , 0.9 ]],

[[0.1 , 0.9 ],
[0.2 , 0.8 ]]]])

Rewards in the prosperous state follow the standard public good game,

𝑅𝑖(p, 𝑎𝑖𝑎−𝑖, p) = { 𝑓𝑐 𝑁𝑐
𝑁 − 𝑐 if 𝑎𝑖 = c

𝑓𝑐 𝑁𝑐
𝑁 if 𝑎𝑖 = d

where 𝑐 denotes the cost of cooperation and 𝑓 , the cooperation synergy factor.

env.R[0, 1, :, :, 1]

array([[ 1., -2.],
[ 3., 0.]])

env.R[1, 1, :, :, 1]

array([[ 1., 3.],
[-2., 0.]])

However, when a state transition involves the degraded state, g, the agents receive an environmental
collapse impact, 𝑚 < 0,

𝑅𝑖(p, 𝑎, g) = 𝑅𝑖(g, 𝑎, p) = 𝑅𝑖(g, 𝑎, g) = 𝑚, for all 𝑎, 𝑖.

For illustration purposes, we set the model’s parameters as 𝑁 = 2, 𝑓 = 1.2, 𝑐 = 5, 𝑚 = −5, 𝑞𝑐 = 0.2,
and 𝑞𝑟 = 0.01:

env = EPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01)
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3.3 Reinforcement learning

Learning helps agents adjust their behavior to changes in their environment, both from other agents
and external factors. This is essential when the future is unpredictable, unknown, and complex, and
thus, detailed pre-planning is doomed to failure.

In particular, reinforcement learning is a trial-and-error method of mapping situations to actions to
maximize a numerical reward signal (Sutton & Barto, 2018). When rewards are a delayed consequence
of current actions, so-called temporal-difference or reward-prediction learning has been particularly in-
fluential (Sutton, 1988). This type of learning summarizes the difference between value estimates from
past and present experiences into a reward-prediction error, which is then used to adapt the current
behavior to gain more rewards over time. There also exist remarkable similarities between compu-
tational reinforcement learning and the results of neuroscientific experiments (Dayan & Niv, 2008).
Dopamine conveys reward-prediction errors to brain structures where learning and decision-making
occur (Schultz et al., 1997). This dopamine reward-prediction error signal constitutes a potential
neuronal substrate for the essential economic decision quantity of utility (Schultz et al., 2017).

In the following, we present the essential elements of the reinforcement learning update.

3.3.1 Gain

We assume that at each time step 𝑡, each agent 𝑖 strives to maximize its exponentially discounted sum
of future rewards,

𝐺𝑖
𝑡 = N𝑖

∞
∑
𝑘=0

(𝛾𝑖)𝑘𝑟𝑖
𝑡+𝑘, (3.1)

where 𝑟𝑖(𝑡 + 𝑘) is the reward agent 𝑖 receives at time step 𝑡 + 𝑘, and 𝛾𝑖 ∈ [0, 1) is the discount factor
of agent 𝑖. The discount factor regulates how much an agent cares for future rewards, where 𝛾𝑖 close
to 1 means that it cares for the future almost as much for the present and 𝛾𝑖 close to 0 means that
it cares almost only for immediate rewards. N𝑖 denotes a normalization constant. It is either 1, or
(1 − 𝛾𝑖). While machine learning researchers often use N𝑖 = 1, the pre-factor 𝑁 𝑖 = (1 − 𝛾𝑖) has the
advantage of normalizing the gains, 𝐺𝑖(𝑡), to be on the same numerical scale as the rewards.

3.3.2 Value functions

Given a joint strategy 𝑋, we define the state values, 𝑉 𝑖
𝑋(𝑠), as the expected gain, 𝐺𝑖(𝑡), when starting

in state 𝑠 and then following the joint strategy, 𝑋,

𝑉 𝑖
𝑋(𝑠) = 𝔼𝑋[𝐺𝑖

𝑡|𝑠𝑡 = 𝑠]. (3.2)

Analogously, we define the state-action values, 𝑄𝑖
𝑋(𝑠, 𝑎), as the expected gain, 𝐺𝑖(𝑡), when starting in

state 𝑠, executing action 𝑎, and then following the joint strategy, 𝑋,

𝑄𝑖
𝑋(𝑠, 𝑎) = 𝔼𝑋[𝐺𝑖

𝑡|𝑠𝑡 = 𝑠, 𝑎𝑖
𝑡 = 𝑎]. (3.3)

From Equation 3.1 and Equation 3.2, we can obtain the famous Bellman equation as follows, denoting
the next state as 𝑠′,
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𝑉 𝑖
𝑋(𝑠) = 𝔼𝑋[𝐺𝑖

𝑡|𝑠𝑡 = 𝑠] (3.4)

= 𝔼𝑋[N𝑖
∞

∑
𝑘=0

(𝛾𝑖)𝑘𝑟𝑖
𝑡+𝑘|𝑠𝑡 = 𝑠] (3.5)

= 𝔼𝑋[N𝑖𝑟𝑖
𝑡 + N𝑖𝛾𝑖

∞
∑
𝑘=0

(𝛾𝑖)𝑘𝑟𝑖
𝑡+1+𝑘|𝑠𝑡 = 𝑠] (3.6)

= 𝔼𝑋[N𝑖𝑟𝑖
𝑡 + 𝛾𝑖𝑉 𝑖

𝑋(𝑠′)|𝑠𝑡 = 𝑠] (3.7)

= 𝔼𝑋[N𝑖𝑅𝑖(𝑠, 𝑎, 𝑠′) + 𝛾𝑖𝑉 𝑖
𝑋(𝑠′)|𝑠𝑡 = 𝑠]. (3.8)

Analogously, we can write for the state-action values,

𝑄𝑖
𝑋(𝑠, 𝑎) = 𝔼𝑋[N𝑖𝑅𝑖(𝑠, 𝑎, 𝑠′) + 𝛾𝑖𝑉 𝑖

𝑋(𝑠′)|𝑠𝑡 = 𝑠, 𝑎𝑖
𝑡 = 𝑎]. (3.9)

Thus, the value function can be expressed via a recursive relationship. The value of a state equals the
discounted value of the next state (𝛾𝑖𝑉 𝑖

𝑋(𝑠′)) plus the reward the agent receives along the way, properly
normalized (𝑁 𝑖𝑅𝑖(𝑠, 𝑎, 𝑠′)). This recursion will come in useful for learning (see Section 3.3.4).

3.3.3 Strategy function

In general, reinforcement learning agents do not know the true state and state-action values, 𝑉 𝑖
𝑋(𝑠),

and 𝑄𝑖
𝑋(𝑠, 𝑎). Instead, they hold variable beliefs about the quality of each available action in each

state 𝑄𝑖
𝑡(𝑠, 𝑎). The higher an agent believes an action brings value, the more likely it will choose it.

We parameterize the agents’ behavior according to the soft-max strategy function,

𝑋𝑖
𝑡(𝑠, 𝑎) = 𝑒𝛽𝑖𝑄𝑖

𝑡(𝑠,𝑎)

∑𝑏 𝑒𝛽𝑖𝑄𝑖
𝑡(𝑠,𝑏) , (3.10)

where the intensity-of-choice parameters, 𝛽𝑖 ∈ ℝ+, regulate the exploration-exploitation trade-off. For
high 𝛽𝑖, agents exploit their learned knowledge about the environment, leaning toward actions with
high estimated state-action values. For low 𝛽𝑖, agents are more likely to deviate from these high-value
actions to explore the environment further with the chance of finding actions that eventually lead
to even higher values. This soft-max strategy function can be motivated by the maximum-entropy
principle (Jaynes & Bretthorst, 2003), stating that the current strategy of an agent should follow a
distribution that maximizes entropy subject to current beliefs about the qualities 𝑄𝑖

𝑡(𝑠, 𝑎) (Wolpert,
2006; Wolpert et al., 2012).

3.3.4 Learning

Learning means updating the quality estimates, 𝑄𝑖
𝑡(𝑠, 𝑎), with the current reward-prediciton error,

𝛿𝑖
𝑡(𝑠, 𝑎), after selection action 𝑎𝑡 in state 𝑠𝑡 according to

𝑄𝑖
𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑖

𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑖𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡), (3.11)
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where 𝛼𝑖 ∈ (0, 1) is the learning rate of agent 𝑖, which regulates how much new information the agent
uses for the update. The reward-prediction error, 𝛿𝑖

𝑡(𝑠𝑡, 𝑎𝑡), equals the difference of the new quality
estimate, N𝑖𝑟𝑖

𝑡 + 𝛾𝑖𝒬𝑖
𝑛(𝑠𝑡+1), and the current quality estimate, 𝒬𝑖

𝑐(𝑠𝑡),

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = N𝑖𝑟𝑖

𝑡 + 𝛾𝑖𝒬𝑖
𝑛(𝑠𝑡+1, 𝑎𝑡+1) − 𝒬𝑖

𝑐(𝑠𝑡, 𝑎𝑡), (3.12)

where the 𝒬𝑖
𝑛 represents the quality estimate of the next state and 𝒬𝑖

𝑐 represents the quality estimate
of the current state. Depending on how we choose, 𝒬𝑖

𝑛, and 𝒬𝑖
𝑐, we recover various well-known

temporal-difference reinforcement learning update schemes (Barfuss et al., 2019).

Variants

For example, if 𝒬𝑖
𝑛 = 𝒬𝑖

𝑐 = 𝑄𝑖
𝑡, we obtain the so called SARSA update,

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = N𝑖𝑟𝑖

𝑡 + 𝛾𝑖𝑄𝑖
𝑡(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑖

𝑡(𝑠𝑡, 𝑎𝑡).

If 𝒬𝑖
𝑛 = max𝑏 𝑄𝑖

𝑡(𝑠𝑡+1, 𝑏), and 𝒬𝑖
𝑐 = 𝑄𝑖

𝑡, we obtain the famous Q-learning update,

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = N𝑖𝑟𝑖

𝑡 + 𝛾𝑖 max
𝑏

𝑄𝑖
𝑡(𝑠𝑡+1, 𝑏) − 𝑄𝑖

𝑡(𝑠𝑡, 𝑎𝑡).

And if 𝒬𝑖
𝑛 = 𝒬𝑖

𝑐 = 𝑉 𝑖
𝑡 is a separate state-value estimate, we obtain an actor-critic update,

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = N𝑖𝑟𝑖

𝑡 + 𝛾𝑖𝑉 𝑖
𝑡 (𝑠𝑡+1) − 𝑉 𝑖

𝑡 (𝑠𝑡).

3.4 Collective Reinforcement Learning Dynamics (CRLD)

3.4.1 Motivation

In Section 3.3, we saw how to derive temporal-difference reward-prediction reinforcement learning from
first principles. Agents strive to improve their discounted sum of future rewards (Equation 3.1) while
acting according to the maximum entropy principle (Equation 3.10). However, using these standard
reinforcement algorithms directly for modeling comes also with some challenges:

• First of all, the learning is highly stochastic, since, in general, all agents strategies 𝑋𝑖(𝑠, 𝑎), and
the environments transition function 𝑇 (𝑠, 𝑎, 𝑠′) are probability distributions.

• This stochasticity can make it sometimes hard to explain, why a phenomenon occurred in a
simulation.

• Reinforcement learning is also very sample-inefficient, meaning it can take the agents a long
time to learn something.

• Thus, learning simulations are computationally intense, since one requires many simulations to
make sense of the stochasticity, of which each takes a long time to address the sample inefficiency.

How can we address these challenges? In Section 3.3.4, we saw that we could express different reward-
prediction learning variants by formulating different reward-prediction errors, 𝛿. The essential idea of
the collective reinforcement learning dynamics approach is to replace the individual sample realizations
of the reward-prediction error with its strategy average plus a small error term,

𝛿 ← ̄𝛿 + 𝜖.
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Thus, collective reinforcement learning dynamics describe how agents with access to (a good ap-
proximation of) the strategy-average reward-prediction error would learn. There are at least three
interpretations to motivate how the agents can obtain the strategy averages:

• The agents are batch learners. They store experiences (state observations, rewards, actions, next
state observations) inside a memory batch and replay these experiences to make the learning
more stable. In the limit of an infinite memory batch, the error term vanishes, 𝜖 → 0 (Barfuss,
2020).

• The agents learn on two different time scales. On one time scale, the agents interact with the
environment, collecting experiences and integrating them to improve their quality estimates while
keeping their strategies fixed. On the other time scale, they use the accumulated experiences to
adapt their strategy. In the limit of a complete time scale separation, having infinite experiences
between two strategy updates, the error term vanishes, 𝜖 → 0 (Barfuss, 2022).

• The agents have a model of how the environment works, including how the other agents behave
currently, but not how the other agents learn. This model can be used to stabilize learning. In
the limit of a perfect model (and sufficient cognitive resources), the error term vanishes, 𝜖 → 0.

In the following, we focus on the idealized case of a vanishing error term, 𝜖 → 0.

3.4.2 Derivation

We start by combining Equation 3.10 and Equation 3.11 to obtain the joint strategy update,

𝑋𝑖
𝑡+1(𝑠, 𝑎) = 𝑋𝑖

𝑡(𝑠, 𝑎) exp (𝛼𝑖𝛽𝑖 ̄𝛿𝑖(𝑠, 𝑎))
∑𝑏 𝑋𝑖

𝑡(𝑠, 𝑏) exp (𝛼𝑖𝛽𝑖 ̄𝛿𝑖(𝑠, 𝑏)) , (3.13)

where we have also replaced the sample reward-prediction error, 𝛿𝑖
𝑡(𝑠, 𝑎), with its strategy average,

̄𝛿𝑖(𝑠, 𝑎). Thus, in the remainder, we can focus on obtaining the strategy-average reward-prediction
error, ̄𝛿𝑖(𝑠, 𝑎) = 𝛿𝑖

𝑋𝑡
(𝑠, 𝑎). We equip a symbol with a straight bar on top to denote the averaging

with the current joint policy 𝑋𝑡. From Equation 3.12, we see that we need to construct the strategy-
average reward, the strategy-average value of the next state, and the strategy-average value of the
current state.

Equation 3.13 suggests summarizing the product of the learning rate 𝛼𝑖 and the intensity-
of-choice 𝛽𝑖 into an effective learning rate 𝜂𝑖. If we restate the denominator by ℨ̄𝑖(𝑠) =
∑𝑏 𝑋𝑖

𝑡(𝑠, 𝑏) exp (𝛼𝑖𝛽𝑖 ̄𝛿𝑖(𝑠, 𝑏)), we recover exactly the form used in the main text,

𝑋𝑖
𝑡+1(𝑠, 𝑎) = 1

ℨ̄𝑖(𝑠)
𝑋𝑖

𝑡(𝑠, 𝑎) exp (𝜂𝑖 ⋅ ̄𝛿𝑖(𝑠, 𝑎)).

Rewards

The strategy-average version of the current reward is obtained by considering each agent 𝑖 taking action
𝑎 in state 𝑠 when all other agents 𝑗 act according to their strategy 𝑋𝑗(𝑠, 𝑎𝑗), causing the environment
to transition to the next state 𝑠′ with probability 𝑇 (𝑠, 𝑎, 𝑠′), during which agent 𝑖 receives reward
𝑅𝑖(𝑠, 𝑎, 𝑠′). Mathematically, we write,

�̄�𝑖(𝑠, 𝑎) = ∑
𝑎𝑗

∑
𝑠′

∏
𝑗≠𝑖

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′)𝑅𝑖(𝑠, a, 𝑠′).
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Next values

The strategy average of the following state value is likewise computed by averaging over all actions of
the other agents and following states.

We start with the simplest learning variant, actor-critic learning. For each agent 𝑖, state 𝑠, and
action 𝑎, all other agents 𝑗 ≠ 𝑖 choose their action 𝑎𝑗 with probability 𝑋𝑗(𝑠, 𝑎𝑗). Consequently, the
environment transitions to the next state 𝑠′ with probability 𝑇 (𝑠, 𝑎, 𝑠′). At 𝑠′, the agent estimates
the quality of the next state to be of ̄𝑉 𝑖(𝑠′). Mathematically, we write,

𝑛�̄�𝑖(𝑠, 𝑎) = ∑
𝑎𝑗

∑
𝑠′

∏
𝑗≠𝑖

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′) ̄𝑉 𝑖(𝑠′).

We obtain the strategy-average value estimate of the following state precisely as the state values of
the following state, ̄𝑉 𝑖(𝑠′) = 𝑉 𝑖

𝑋(𝑠′), as defined in Equation 3.2. We compute them by writing the
Bellman equation,

̄𝑉 𝑖(𝑠) = N𝑖�̄�𝑖(𝑠) + 𝛾𝑖 ̄𝑇 (𝑠, 𝑠′) ̄𝑉 𝑖(𝑠′),
in matrix form,

̄𝑉 𝑖 = N𝑖�̄�𝑖 + 𝛾𝑖 ̄𝑇 ̄𝑉 𝑖,
which allows us to bring all state value variables on one site through a matrix inversion,

̄𝑉 𝑖 = 𝑁 𝑖 (𝟙𝑍 − 𝛾𝑖 ̄𝑇 )−1 �̄�𝑖.

Here, �̄�𝑖(𝑠) is the strategy-average reward value agent 𝑖 receives in state 𝑠. They are computed by
averaging over all agents’ strategies, 𝑋𝑗(𝑠, 𝑎𝑗), and the state transition 𝑇 (𝑠, 𝑎, 𝑠′),

�̄�𝑖(𝑠) = ∑
𝑎𝑗

∑
𝑠′

∏
𝑗

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′)𝑅𝑖(𝑠, 𝑎, 𝑠′).

And ̄𝑇 (𝑠, 𝑠′) are the strategy-average transition probabilities. They are computed by averaging over
all agents’ strategies, 𝑋𝑗(𝑠, 𝑎𝑗),

̄𝑇 (𝑠, 𝑠′) = ∑
𝑎𝑗

∏
𝑗

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′).

Last, 𝟙𝑍, is the 𝑍-by-𝑍 identity matrix.

For SARSA learning, the strategy average of the following state value reads,

𝑛�̄�𝑖(𝑠, 𝑎) = ∑
𝑎𝑗

∑
𝑠′

∏
𝑗≠𝑖

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′) ∑
𝑎𝑖

𝑋𝑖(𝑠′, 𝑎𝑖)�̄�𝑖(𝑠′, 𝑎𝑖),

where we replace 𝑄𝑖
𝑡(𝑠𝑡+1, 𝑎𝑡+1) by the strategy-average next-state next-action value ∑𝑎𝑖 𝑋𝑖(𝑠′, 𝑎𝑖)�̄�𝑖(𝑠′, 𝑎𝑖).

Here, the strategy-average state-action values, �̄�𝑖(𝑠, 𝑎) = 𝑄𝑖
𝑋(𝑠, 𝑎), are exaclty the state-action values

defined in Equation 3.3. We compute them exactly as Equation 3.3 prescribes,

�̄�𝑖(𝑠, 𝑎) = N𝑖�̄�𝑖(𝑠, 𝑎) + 𝛾𝑖 ∑
𝑠′

̄𝑇 𝑖(𝑠, 𝑎, 𝑠′) ̄𝑉 𝑖(𝑠′),
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where ̄𝑇 𝑖(𝑠, 𝑎, 𝑠′) is the strategy-average transition model from the perspective of agent 𝑖. It can be
computed by averaging out all other agents’ strategies from the transition tensor,

̄𝑇 𝑖(𝑠, 𝑎, 𝑠′) = ∑
𝑎𝑗

∏
𝑗≠𝑖

𝑋𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, a, 𝑠′).

However, it is easy to show that ∑𝑎𝑖 𝑋𝑖(𝑠′, 𝑎𝑖)�̄�𝑖(𝑠′, 𝑎𝑖) = ̄𝑉 𝑖(𝑠′), and thus, the strategy-average
next-state values of SARSA and actor-critic learning are indeed identical.

Current values

The strategy-average of the current state value in the reward-prediction error of actor-critic learning,
̄𝑉 𝑖(𝑠), is - for each agent 𝑖 and state 𝑠 - a constant in actions. Thus, they do not affect the joint

strategy update (Equation 3.13).

The state-action value of the current state, 𝑄𝑖
𝑡(𝑠𝑡, 𝑎𝑡), in SARSA learning becomes, 1

𝛽𝑖 ln𝑋𝑖(𝑠, 𝑎), in
the strategy-average reward-prediction error and can be seen as a regularization term. We can derive
it by inverting Equation 3.10,

𝑄𝑖
𝑡(𝑠, 𝑎) = 1

𝛽𝑖 ln𝑋𝑖
𝑡(𝑠, 𝑎) + 1

𝛽𝑖 ln( ∑
𝑏

𝑒𝛽𝑖𝑄𝑖
𝑡(𝑠,𝑏)),

and realizing that the dynamics induced by Equation 3.13 are invariant under additive transformations,
which are constant in actions.

Reward-prediction error

Together, the strategy-average reward-prediction error for actor-critic learning reads,

̄𝛿𝑖(𝑠, 𝑎) = N𝑖�̄�𝑖(𝑠, 𝑎) + 𝛾𝑖 ⋅ 𝑛�̄�𝑖(𝑠, 𝑎) = �̄�𝑖(𝑠, 𝑎),

and the strategy-average actor-critic learning dynamics, thus,

𝑋𝑖
𝑡+1(𝑠, 𝑎) = 𝑋𝑖

𝑡(𝑠, 𝑎) exp (𝛼𝑖𝛽𝑖�̄�𝑖(𝑠, 𝑎))
∑𝑏 𝑋𝑖

𝑡(𝑠, 𝑏) exp (𝛼𝑖𝛽𝑖�̄�𝑖(𝑠, 𝑏)) .

With 𝛼𝑖𝛽𝑖�̄�𝑖(𝑠, 𝑎) being the fitness of agent 𝑖’s action 𝑎 in state 𝑠, these dynamics are exactly equivalent
to the alternative replicator dynamics in discrete time (Hofbauer & Sigmund, 2003).

For SARSA learning, the strategy-average reward-prediction error reads,

̄𝛿𝑖(𝑠, 𝑎) = N𝑖�̄�𝑖(𝑠, 𝑎) + 𝛾𝑖 ⋅ 𝑛�̄�𝑖(𝑠, 𝑎) − 1
𝛽𝑖 ln𝑋𝑖(𝑠, 𝑎) = �̄�𝑖(𝑠, 𝑎) − 1

𝛽𝑖 ln𝑋𝑖(𝑠, 𝑎),

and the strategy-average SARSA learning dynamics, thus,

𝑋𝑖
𝑡+1(𝑠, 𝑎) = 𝑋𝑖

𝑡(𝑠, 𝑎) exp (𝛼𝑖(𝛽𝑖�̄�𝑖(𝑠, 𝑎) − ln𝑋𝑖(𝑠, 𝑎)))
∑𝑏 𝑋𝑖

𝑡(𝑠, 𝑏) exp (𝛼𝑖(𝛽𝑖�̄�𝑖(𝑠, 𝑏) − ln𝑋𝑖(𝑠, 𝑏))) .
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4 Multi-stability

In this section, we illustrate complex phenomena around multi-stability in the phase space of CRLD.

First, we import everything we need:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D

from pyCRLD.Environments.EcologicalPublicGood import EcologicalPublicGood as EPG
from pyCRLD.Agents.StrategyActorCritic import stratAC
from pyCRLD.Utils import FlowPlot as fp

4.1 Phase space plot

We start by plotting the flow of CRLD in the strategy phase space projection of the prosperous state.
For that, we define a function, to help us compile as initial strategies.

def compile_strategy(p0c:float, # cooperation probability of agent zero
p1c:float): # cooperation probability of agent one

Pi = np.array([0.95, p0c]) # coop. prob. in degraded state set to 0.95
Pj = np.array([0.95, p1c])
xi = np.array([Pi, 1-Pi]).T
xj = np.array([Pj, 1-Pj]).T
return np.array([xi, xj])

For example,

compile_strategy(0.2, 0.95)

array([[[0.95, 0.05],
[0.2 , 0.8 ]],

[[0.95, 0.05],
[0.95, 0.05]]])

The arrows indicate the strategy-average reward-prediction errors. Their colors additionally indicate
their length.
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# Inititalize the ecological public good environment
env = EPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)

# Create multi-agent environment interface
MAEi = stratAC(env=env, learning_rates=0.1, discount_factors=0.75)

# Strategy flow plot
# ------------------
x = ([0], [1], [0]) # which (agent, observation, action) to plot on x axis
y = ([1], [1], [0]) # which (agent, observation, action) to plot on y axis
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
ax = fp.plot_strategy_flow(MAEi, x, y, action_probability_points, NrRandom=64)

# Trajectories
# ------------------
xtrajs = [] # storing strategy trajectories
fprs = [] # and whether a fixed point is reached
for pc in [0.15, 0.175, 0.2]: # cooperation probability of agent 2

X = compile_strategy(pc, 0.95)
xtraj, fixedpointreached = MAEi.trajectory(X, Tmax=2000, tolerance=10**-5)
xtrajs.append(xtraj); fprs.append(fixedpointreached)
print("Trajectory length:",len(xtraj))

# Add trajectories to flow plot
fp.plot_trajectories(xtrajs, x=x, y=y, fprs=fprs,

cols=['red','blue','blue'], lws=[2], msss=[2],
lss=['-'], alphas=[0.75],
axes=ax)

# Add separatrix
o = [0.619, 0.6191]; o1 = compile_strategy(*o); o2 = compile_strategy(*o[::-1])
sep1=[]; sep2=[]
for _ in range(1000): o1, _ = MAEi.reverse_step(o1); sep1.append(o1)
for _ in range(1000): o2, _ = MAEi.reverse_step(o2); sep2.append(o2)
fp.plot_trajectories([sep1, sep2], x=x, y=y, cols=['purple'], lws=[1],

lss=['--'], alphas=[0.95], plot_startmarker=False, axes=ax)

# Add saddle node
# by reversing the dynamics from two agents with identical strategies
o = [0.5, 0.5]; o = compile_strategy(*o)
for _ in range(1000): o, _ = MAEi.reverse_step(o)
ax[0].scatter(*o[:,1,0], c='purple', marker='P', s=50)

# Make labels nice
ax[0].set_ylabel(f"$X^2(s=Prosp.,a=Coop.)$")
ax[0].set_xlabel(f"$X^1(s=Prosp.,a=Coop.)$")

# # Save plot
plt.gcf().set_facecolor('white') # for dark mode on web
plt.tight_layout()
plt.savefig('_figs/fig_01PhaseSpace.png', dpi=150)
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Trajectory length: 296
Trajectory length: 298
Trajectory length: 253

Figure 4.1: Phase space projection of the prosperous state of the ecological public goods environment

4.2 Sample trajectories

Next, we create a more fine-grained bundle of learning trajectories.

# Cooperation probability of agent 2
pcs = np.concatenate((np.linspace(0.05, 0.95, 51),

np.linspace(0.15, 0.18, 101),
np.linspace(0.1646, 0.1649, 101),
np.linspace(0.16475, 0.164765, 51)))

pcs = np.sort(np.unique(pcs))

xtrajs = [] # storing strategy trajectories
fprs = [] # and whether a fixed point is reached
for pc in pcs:

# Compile initial joint strategy
Pi = np.array([0.95, pc])
Pj = np.array([0.95, 0.95])
xi = np.array([Pi, 1-Pi]).T
xj = np.array([Pj, 1-Pj]).T
X = np.array([xi, xj])

# Compute trajectory
xtraj, fixedpointreached = MAEi.trajectory(X, Tmax=2000, tolerance=10**-5)
xtrajs.append(xtraj)
fprs.append(fixedpointreached)

We obtain the critical point in this bundle of learning trajectories where the two agents switch or tip
from complete defection to complete cooperation.
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# assuming, that all trajectories convergend
assert np.all(fprs)

# obtaining the cooperation probability at convergences
converged_pcs = [xtraj[-1][:, 1, 0] for xtraj in xtrajs]

# showing the biomodal distribution of full defection and full cooperation
np.histogram(np.array(converged_pcs).mean(-1), range=(0,1))[0]

array([138, 0, 0, 0, 0, 0, 0, 0, 0, 162])

Thus, the critical point lies at the index

cp = np.histogram(np.array(converged_pcs).mean(-1), range=(0,1))[0][0]
cp

138

and has an approximate value between

print(pcs[cp-1], 'and', pcs[cp], '.')

0.1647584 and 0.1647587 .

4.3 Critical slowing down

We use this more fine-grained bundle of learning trajectories to visualize the phenomenon of a critical
slowing down by plotting the time steps required to reach convergence.

# Create the canves
fsf = 0.7 # figure size factor
plt.figure(figsize=(fsf*4, fsf*2.5))

# Plot the time steps required to convergence, i.e. the trajectory lengths
plt.plot(pcs[:cp], [len(xtraj) for xtraj in xtrajs[:cp]],

'-', color='red', lw=2, alpha=0.8) # defectors in red
plt.plot(pcs[cp:], [len(xtraj) for xtraj in xtrajs[cp:]],

'-', color='blue', lw=2, alpha=0.6) # cooperators in blue

# Make labels and axis nice
plt.xlabel(f"$X^1(s=Prosp.,a=Coop.)$")
plt.ylabel('Timesteps to\nconvergence')
plt.xlim(0,1)
plt.ylim(0, 800)
plt.gca().spines.right.set_visible(False)
plt.gca().spines.top.set_visible(False)
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# Save plot
plt.gcf().set_facecolor('white') # for dark mode on web
plt.subplots_adjust(top=0.95, bottom=0.3, left=0.28, right=0.94)
plt.savefig('_figs/fig_01SlowingDown.png', dpi=150)

Figure 4.2: Time steps required to convergence show a critical slowing down around the tipping point.

At the critical point 𝑋1
0(𝑠 = Prosp., 𝑎 = Coop.) ≈ 0.16475855, the collective learning takes about an

order of magnitude longer to converge than close to full cooperation 𝑋1
0(𝑠 = Prosp., 𝑎 = Coop.) ≈ 1.0,

and about four times as much than close to full defection 𝑋1
0(𝑠 = Prosp., 𝑎 = Coop.) ≈ 0.0.

4.4 Detailed phase space

We plot a detailed phase space where we zoom in on the area around the critical saddle point on the
separatrix.

# Create the canves
fsf = 0.65 # figure size factor
_, ax = plt.subplots(1,1, figsize=(fsf*4, fsf*3.5))

# Plot the reward-prediction error flow
action_probability_points = np.linspace(0.612, 0.619, 17)
ax = fp.plot_strategy_flow(MAEi, x, y, action_probability_points, NrRandom=64,

axes=[ax])

# Plot the defecting learning trajectories in red
fp.plot_trajectories(xtrajs[:cp], x=x, y=y, fprs=fprs, axes=ax, cols=['red'],

lws=[2], msss=[2], mss=['.'], lss=['-'], alphas=[0.15])

# Plot the cooperating learning trajectories in blue
fp.plot_trajectories(xtrajs[cp:], x=x, y=y, fprs=fprs, axes=ax, cols=['blue'],

lws=[2], msss=[2], mss=['.'], lss=['-'], alphas=[0.15])

# Make labels and axis nice
ax[0].set_ylabel(f"$X^2(s=Prosp.,a=Coop.)$")
ax[0].set_xlabel(f"$X^1(s=Prosp.,a=Coop.)$")

ax[0].set_ylim(0.613, 0.619)
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ax[0].set_xlim(0.6125, 0.6155)

# Save plot
plt.gcf().set_facecolor('white') # for dark mode on web
plt.tight_layout()
plt.savefig('_figs/fig_01PhaseSpaceDetail.png', dpi=150)

Figure 4.3: Strategy phase space at the critical bifurcation point.

4.5 Time scale separation

Last, we visulize the emergent time scale separation at the critical point by plotting the level of
cooperation over time for the two initial strategies around the critical point.

# Create the canves
fsf = 0.5 # figure size factor
plt.figure(figsize=(fsf*6, fsf*4))

# Plot the defecting learners in red
# agent 1 with dots
plt.plot(xtrajs[cp-1][:, 0, 1, 0], color='red', lw=5, ls=':')
# agent 2 with dashes
plt.plot(xtrajs[cp-1][:, 1, 1, 0], color='red', lw=4, ls="--", alpha=0.4)

# Plot the cooperating learners in blue
# agent 1 with dots
plt.plot(xtrajs[cp][:, 0, 1, 0], color='blue', lw=3, ls=':')
# agent 2 with dashes
plt.plot(xtrajs[cp][:, 1, 1, 0], color='blue', lw=2, ls="--", alpha=0.4)

# Create a nice legend
custom_lines = [Line2D([0], [0], color='black', ls=':', lw=2),

Line2D([0], [0], color='gray', ls='--', lw=2)]
plt.legend(custom_lines, ['Agent 1', 'Agent 2'], ncol=1)

# Make labels and axis nice
plt.gca().spines.right.set_visible(False)
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plt.gca().spines.top.set_visible(False)
plt.xlabel("Timesteps")
plt.ylabel("Cooperation")

# Save plot
plt.gcf().set_facecolor('white') # for dark mode on web
plt.subplots_adjust(top=0.98, bottom=0.22, left=0.22, right=0.98)
plt.savefig('_figs/fig_01PhaseSpaceTrajectory.png', dpi=150)

Figure 4.4: Emergent time scale seperation at the critical point.
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5 Abrupt transitions

In this section, we illustrate complex phenomena around abrupt transitions in the parameter space of
CRLD. In this example, we focus on the discount factor, which indicates how much the agents care
for future rewards. Abrupt transitions go by many names, such as critical transitions, regime shifts,
bifurcations, or tipping elements, to name some of them.

First, we import everything we need:

import numpy as np
import matplotlib.pyplot as plt

from pyCRLD.Environments.EcologicalPublicGood import EcologicalPublicGood as EPG
from pyCRLD.Agents.StrategyActorCritic import stratAC

import _code.SimulationScripts as sim

5.1 Compute data

We start by computing the CRLD trajectories from 250 random initial strategies along a varying
discount factor.

# Set data trajectory for storing results, e.g.,
ddir = '/Users/wolf/Downloads/CoCoIn_data'

# Initialize first environment and multi-agent environment interface (MAEi)
env = EPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)
MAEi = stratAC(env=env, learning_rates=0.1, discount_factors=0.99,

use_prefactor=True)↪

# Create random initial strategies from simulation scripts 'sim'
Xs = sim.initial_strategies(MAEi, 250)

# Create discount factors to loop through
discountfacts = np.sort(np.unique(list(np.linspace(0.1, 1.0, 10)[:-1].round(2))

+ list(np.arange(0.5, 1.0, 0.05).round(2))
+ list(np.arange(0.65, 0.9, 0.0125).round(4))
+ [0.01, 0.99]))

print("Discount factors:")
print(discountfacts)

Discount factors:
[0.01 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.6625
0.675 0.6875 0.7 0.7125 0.725 0.7375 0.75 0.7625 0.775 0.7875
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0.8 0.8125 0.825 0.8375 0.85 0.8625 0.875 0.8875 0.9 0.95
0.99 ]

# compute or load the data from disk (if they exist)
convtimes = []; rewss = []; coops = []
for dcf in discountfacts:

print(f" = = = = {dcf} = = = =")
MAEi = stratAC(env=env, learning_rates=0.1, discount_factors=dcf,

use_prefactor=False)

trjs, fprs = sim.obtain_trajectories(MAEi, Xs, 25000, ddir=ddir)

# convergence times
convtimes.append([len(trj) for trj in trjs])

# final rewards
rewss.append(sim.final_rewards(MAEi, trjs))

# cooperative acts
coops.append([trj[-1].astype(float)[:,1,0] for trj in trjs])

5.2 Plotting function

Next, we create a function to plot the data along the varying parameter.

def plot_valuehistograms_vs_parameters(parameters, values, bins, rnge,
marker='.', alpha=1.0, color='black',
cmap='viridis', ax=None):

"""
Plot a histogram for each parameter next to each other.

Parameters
----------
parameters: iterable

of float-valued parameters
values: iterable

of iterable of values for each parameter
bins: int

The number of bins for the histograms
rnge: tupe

Range of the histogram as (min, max)
"""
# Figure
if ax is None:

_, ax = plt.subplots()

# Create iterable of histograms for values
valhist=[]
for conv in values:

h = np.histogram(conv, bins=bins, range=rnge)[0]
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valhist.append(h)

# Adjust spacing
params = np.array(parameters)
delta = params[1:] - params[:-1]
paramedges = np.concatenate(([parameters[0]-0.5*delta[0]],

parameters[:-1] + 0.5*delta,
[parameters[-1]+0.5*delta[-1]]))

valedges = np.linspace(rnge[0], rnge[1], bins+1)

# Plot histograms with colormap
X, Y = np.meshgrid(paramedges, valedges)
ax.pcolormesh(X, Y, np.array(valhist).T, cmap=cmap, alpha=alpha*0.75)

# Plot median, quantiles and mean
quartile1, medians, quartile3 = np.percentile(values, [25, 50, 75], axis=1)
ax.fill_between(params, quartile1, quartile3, color=color, alpha=alpha*0.2)
ax.plot(params, medians, marker=marker, markersize=4, linestyle='-',

color=color, alpha=0.5*alpha)
ax.plot(params, np.mean(values, axis=1), marker=marker, linestyle='',

color=color, alpha=alpha)

# Adjust the visible y range
ax.set_ylim(rnge[0], rnge[1])

5.3 Abrupt transition

We use the created plotting function (Section 5.2) to visualize the phenomenon of an abrupt transition
from complete defection to complete cooperation.

We show the abrupt transition in the level of cooperation at convergence.

# Create the canves
fsf = 0.7 # figure size factor
fig, ax = plt.subplots(figsize=(fsf*6, fsf*3))

# Plot the cooperation probabilities versus the discount factors
plot_valuehistograms_vs_parameters(parameters=discountfacts,

values=np.array(coops).mean(-1), ax=ax,
bins=21, rnge=(-0.1, 1.1), cmap='Blues')

# Make labels and axis nice
plt.ylabel('Cooperation')
plt.xlabel('Discount factor')

# Save plot
plt.subplots_adjust(left=0.15, right=0.98, top=0.98, bottom=0.2)
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Figure 5.1: Abrupt transition in final cooperation likelihood

We also show the abrupt transition in the level of final rewards obtained by the agents.

# Create the canves
fsf = 0.7 # figure size factor
fig, ax = plt.subplots(figsize=(fsf*6, fsf*3))

# Plot the reward levels versus the discount factors
plot_valuehistograms_vs_parameters(parameters=discountfacts,

values=np.array(rewss).mean(-1), ax=ax,
bins=21, rnge=(-5.25, 1.25), cmap='Reds')

# Make labels and axis nice
plt.ylabel('Reward')
plt.xlabel('Discount factor')
plt.subplots_adjust(left=0.15, right=0.98, top=0.98, bottom=0.2)

Figure 5.2: Abrupt transition in final rewards

Since the transition from complete defection to complete cooperation and from low reward and high
reward appear similar, we can also try to plot them together into one plot, with cooperation on the
left y-axis and the reward on the right y-axis.
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# Create the canves
fsf = 0.7 # figure size factor
fig, ax1 = plt.subplots(figsize=(fsf*6, fsf*2.8))
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis

# Plot the cooperation probabilities versus the discount factors
plot_valuehistograms_vs_parameters(parameters=discountfacts,

values=np.array(coops).mean(-1), ax=ax1,
bins=21, rnge=(-0.1, 1.1), cmap='Blues',
marker='x', color='blue')

# Plot the reward levels versus the discount factors
plot_valuehistograms_vs_parameters(parameters=discountfacts,

values=np.array(rewss).mean(-1), ax=ax2,
bins=21, rnge=(-5.35, 1.55), cmap='Reds',
marker='.', alpha=0.5, color='red')

# Make labels and axis nice
ax1.set_xlabel('Discount factor')
ax1.set_ylabel('Cooperation (X)', color='Blue')
ax1.tick_params(axis='y', labelcolor='Blue')
ax2.set_ylabel('Reward (� )', color='Red')
ax2.tick_params(axis='y', labelcolor='Red')
ax2.set_yticks([-5, 0, 1]);
plt.subplots_adjust(left=0.15, right=0.88, top=0.96, bottom=0.22)
plt.savefig('_figs/fig_02AbruptTransitionCooperationReward.png', dpi=150)

Figure 5.3: Abrupt transition in final cooperation likelihood and in final rewards

5.4 Critical slowing down

We use the created plotting function (Section 5.2) to visualize the phenomenon of a critical slowing
down of the learning speed around the tipping point.

# Create the canves
fsf = 0.7 # figure size factor
fig, ax = plt.subplots(figsize=(fsf*6, fsf*3.5))
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# Plot the convergence times versus the discount factors
plot_valuehistograms_vs_parameters(parameters=discountfacts, values=convtimes,

bins=21, rnge=(0, 150), cmap='Greys', ax=ax)

# Make labels and axis nice
plt.ylabel('Timesteps to convergence')
plt.xlabel('Discount factor')

# Save plot
plt.subplots_adjust(left=0.15, right=0.98, top=0.96, bottom=0.18)
plt.savefig('_figs/fig_02AbruptTransitionSpeed.png', dpi=150)

Figure 5.4: Critical slowing down in parameter space
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6 Hysteresis

In this section, we illustrate the complex phenomenon of hysteresis in CRLD. Hysteresis means that
the system’s state depends on the history of external parameter changes. Here, we show that hysteresis
exists by varying the discount factor, which indicates how much the agents care for future rewards.
We let the discount factor increase and decrease again while the CRLD keeps running.

First, we import everything we need:

import numpy as np
import matplotlib.pyplot as plt

from pyCRLD.Environments.EcologicalPublicGood import EcologicalPublicGood as EPG
from pyCRLD.Agents.StrategySARSA import stratSARSA as stratS

In contrast to the previous examples, where we used stratAC, i.e., actor-critic learning agents in
strategy space, we use stratSARSA agents, as seen above in the imports. The SARSA agents differ from
the actor-critic learners in their exploration terms. The SARSA agents keep a constant exploration
term, which prevents them from converging too close to the edges of the strategy phase space. They
are constantly exploring to some extent. Keeping a small distance to the edges of the strategy phase
space is required for hysteresis. When the external parameter changes while CRLD keeps running,
the agents need to be able to change their current equilibrium. Otherwise, no change of equilibrium
is observable.

To be able to change their current equilibrium requires the agents to keep a small distance from the
strategy phase space edges, as one can also see in the learning update equation,

𝑋𝑖
𝑡+1(𝑠, 𝑎) = 1

ℨ̄𝑖(𝑠)
𝑋𝑖

𝑡(𝑠, 𝑎) exp (𝜂𝑖 ⋅ ̄𝛿𝑖(𝑠, 𝑎)).

If 𝑋𝑖
𝑡(𝑠, 𝑎) is too close to zero or one, no update can happen, regardless of the strategy-average reward-

prediction error ̄𝛿𝑖
𝑡(𝑠, 𝑎). See Barfuss et al. (2019) for a detailed comparison between the CRLD of

SARSA and actor-critic learning.

By trial-and-error, we set the choice intensity of SARSA learning to 60 log-probils per util.

6.1 Compute data

First, we compute the data for the hysteresis curve.

# Set up the ecological public goods environment
env = EPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)

# Compile the list of discount factors
dcfs = list(np.arange(0.6, 0.9, 0.005))
# Hysteresis curve parameters first increase and then decrease again
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hystcurve = dcfs + dcfs[::-1]

coops = [] # for storing the cooperation probabilities
for i, dcf in enumerate(hystcurve):

# Adjust multi-agent environment interface with discount factor
MAEi = stratS(env=env, discount_factors=dcf, use_prefactor=True,

learning_rates=0.01, choice_intensities=60)
if i==0: # Choose random intial policy

X = MAEi.random_softmax_strategy()

# Compute trajectory
trj, fpr = MAEi.trajectory(X, Tmax=2500, tolerance=10e-12)
print('\r ', dcf, fpr, end=' ')
X = trj[-1] # select last strategy
coops.append(X[:, 1, 0]) # append to storage container

6.2 Plot curve

Now, we plot the computed data. We use the points’ size and color to indicate the time dimensions
of the discount factor changes. The time flows from big to small data points and from dark to light
ones.

# Create the canves
fsf = 0.75 # figure size factor
plt.figure(figsize=(fsf*6, fsf*3))

# Plot background line
plt.plot(hystcurve, np.array(coops).mean(-1),'-',alpha=0.5,color='k',zorder=-1)
# Plot data points with size and color indicating the time dimension
plt.scatter(hystcurve, np.array(coops).mean(-1), alpha=0.9,

s=np.arange(len(hystcurve))[::-1]+1, c=np.arange(len(hystcurve)))

# Make labels and axis nice
plt.ylabel('Cooperation')
plt.xlabel('Discount Factor')
plt.gca().spines.right.set_visible(False)
plt.gca().spines.top.set_visible(False)

# Legend
ax = plt.gcf().add_axes([0.85, 0.22, 0.12, 0.6])
# ax = plt.gcf().add_axes([0.135, 0.38, 0.12, 0.6])
ax.scatter(np.ones_like(hystcurve)[::4], np.arange(len(hystcurve))[::4], alpha=0.9,

s=0.75*np.arange(len(hystcurve))[::-1][::4]+1,
c=np.arange(len(hystcurve))[::4])↪

# ax.annotate('Time', xy=(0.5, 1.07), xycoords='axes fraction', va='center',
ha='center', fontsize=9)↪

ax.annotate('Start', xy=(1.6, 0), xycoords='data', va='center', ha='left',
fontsize=8)↪

ax.annotate('End', xy=(1.6, len(hystcurve)-5), xycoords='data', va='center',
ha='left', fontsize=8)↪
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ax.set_ylim(-10,); ax.set_xlim(0,4)
ax.set_yticks([]); ax.set_xticks([])
for spine in ax.spines.values(): spine.set_edgecolor('grey')

# Save plot
plt.subplots_adjust(left=0.125, right=0.98, top=0.98, bottom=0.2)
plt.savefig("_figs/fig_03Hysteresis.png", dpi=150)

Figure 6.1: Hysteresis curve

As one can see, when the discount factor starts to increase, the learners remain close to defection
up to the critical point of about 0.83 when they suddenly switch to complete cooperation. However,
when the discount factor starts to decrease again, they remain at almost full cooperation until a much
smaller value of approx. 0.71. Only then do the agents suddenly become complete defectors again.
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7 Dynamic regimes

In the main text, we have considered only cases where CRLD converged to a single joint strategy,
called a fixed point in dynamical systems theory. However, some phenomena, like business cycles or
an unpredictable stock market, seem not to exhibit such convergence behavior at all. And indeed,
multiple different dynamic regimes can arise from a given CRLD. Besides convergence to a fixed point,
learning may lead to periodic oscillations or even unpredictable chaotic attractors. This observation
is well established in the CRLD literature.

Figure 7.1 highlights the difference between a converging learning trajectory in blue and chaotically
oscillating ones in red and orange in the memory-one Prisoner’s Dilemma. While the blue trajectory
converged after ≈ 250 time steps, the red and orange ones oscillate for more than an order of magnitude
longer. Phases of higher and lower reward alternate for each agent, while overall inequality between
the agents emerges on the transient learning dynamics.

Diverse dynamic regimes help to explain how cyclical or unpredictable chaotic behavior can emerge
from simple learning rules. A better understanding of when such regimes occur is also important for
large MARL systems, e.g., regarding the sensitivity to hyperparameters (Leonardos & Piliouras, 2021)
or the creation of novel solution concepts (Zinkevich et al., 2005), and thus, the overall stability of a
cooperative regime.

Below, we give all details on how to reproduce the results shown in Figure 7.1. First, we import
everything we need:

import numpy as np
from pyDOE import lhs
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from matplotlib.lines import Line2D

from pyCRLD.Environments.SocialDilemma import SocialDilemma as PD
from pyCRLD.Environments.HistoryEmbedding import HistoryEmbedded as he
from pyCRLD.Agents.StrategyActorCritic import stratAC
from pyCRLD.Utils import FlowPlot as fp

7.1 Memory-one prisoners’ dilemma environment

By trial and error, we saw that the ecological public goods environment is not prone to exhibit
dynamic regimes other than convergence to fixed points. Thus, we here use the memory-one Prisoner’s
Dilemma. We start creating the memory-one Prisoner’s Dilemma by initializing a standard normal-
form Prisoner’s Dilemma.

pd = PD(R=1.0, T=1.25, S=-0.25, P=0)

The rewards of agent 1 and agent 2, respectively, are:
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pd.R[0, 0, :, :, 0]

array([[ 1. , -0.25],
[ 1.25, 0. ]])

and

pd.R[1, 0, :, :, 0]

array([[ 1. , 1.25],
[-0.25, 0. ]])

with the first action cooperation, and the second defection. The environment state set consists only of
a void dummy state,

pd.Sset

['.']

To transform the normal-form Prisoner’s Dilemma (PD) into a memory-one PD, we can use the
history-embedding class he.

::: {.cell 0=‘h’ 1=‘i’ 2=‘d’ 3=‘e’ execution_count=10}

from nbdev.showdoc import *

:::

show_doc(he)

source

7.1.1 HistoryEmbedded

HistoryEmbedded (env, h)

Abstract Environment wrapper to embed a given environment into a larger history space

hmust be an iterable of length 1+N (where N=Nr. of Agents) The first element of history specifies the
length of the state-history. Subsequent elements specify the length of the respective action-history

Details
env An environment
h History specification
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Thus,

# Inititalize the memory-1 Prisoner's Dilemma:
env = he(pd, (1,1,1))

which automatically results in the following four environmental states,

env.Sset

['c,c,.|', 'c,d,.|', 'd,c,.|', 'd,d,.|']

For example, the first state, 'c,c,.|, indicates that both agents chose cooperation c in the previous
round. The state, 'c,d,.|, means that the first agents chose cooperation c and the second defection
d, and so on.

With the memory-one PD environment ready, we can finally create the multi-agent environment
interface

MAEi = stratAC(env=env, learning_rates=0.1, discount_factors=0.99)

7.2 Compute data

The initial strategy is vital to showcase different dynamic regimes in the memory-one PD environment.
By trial and error (see Section 7.4), we obtained an interesting initial strategy which we hardcoded
below. We compare this initial strategy to two other strategies. One is close by, the other further
apart.

# Initial strategies
# ------------------
# Initial strategy 1
X1 = np.array([[[0.60862106, 0.39137894],

[0.65139908, 0.34860092],
[0.72655916, 0.27344087],
[0.52245504, 0.47754502]],
[[0.26495466, 0.73504543],
[0.88308924, 0.1169107 ],
[0.37133005, 0.62866992],
[0.53166837, 0.46833161]]])

# Initial strategy 2
X2 = np.array([[[0.60, 0.4],

[0.6, 0.4],
[0.7, 0.3],
[0.5, 0.5]],
[[0.3, 0.7],
[0.8, 0.2 ],
[0.3, 0.7],
[0.5, 0.5]]])

# Initial strategy 3
Pi = np.array([0.98, 0.05, 0.85, 0.99])
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Pj = np.array([0.2, 0.8, 0.05, 0.95])
xi = np.array([Pi, 1-Pi]).T
xj = np.array([Pj, 1-Pj]).T
X3 = np.array([xi, xj])
# Initial strategies
Xs = [X1, X2, X3]

# Trajectories
# ------------
xtrajs = [] # storing strategy trajectories
fprs = [] # and whether a fixed point is reached
for i, X in enumerate(Xs):

xtraj, fpr = MAEi.trajectory(X, Tmax=2500, tolerance=10**-5)
xtrajs.append(xtraj)
fprs.append(fpr)

# Compute reward trajectories
rtrajs = [np.array([MAEi.Ri(x) for x in xtraj]) for xtraj in xtrajs]

7.3 Plot data

We plot the computed data with the strategy trajectories in phase space and reward trajectories over
time.

# Create canvas
fsf = 0.7 # figure size factor
fig = plt.figure(figsize=(fsf*4.5, fsf*6))
gs = GridSpec(2, 1, height_ratios=[1, 4],

hspace=0.35, left=0.18, right=0.98, top=0.92, bottom=0.12)
ax1 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[1])

# Strategy flow plot
# ------------------
x = ([0], [0], [0]) # which (agent, observation, action) to plot on x axis
y = ([1], [0], [0]) # which (agent, observation, action) to plot on y axis
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
fp.plot_strategy_flow(MAEi, x, y, action_probability_points, NrRandom=64,

cmap='Greys', sf=0.20, axes=[ax2])

# Trajectories
# ------------
# in phase space
fp.plot_trajectories(xtrajs, x=x, y=y, fprs=fprs, axes=[ax2], alphas=[0.5],

cols=['red','orange','blue'], lws=[2], lss=['-'])
# and over time
ax1.plot(rtrajs[0][:, 0], c='red', ls='--')
ax1.plot(rtrajs[0][:, 1], c='red', ls=':')
ax1.plot(rtrajs[1][:, 0], c='orange', ls='--')
ax1.plot(rtrajs[1][:, 1], c='orange', ls=':')
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ax1.plot(rtrajs[2][:, 0], c='blue', ls='--')
ax1.plot(rtrajs[2][:, 1], c='blue', ls=':')

# Decorations
# -----------
# Make labels nice
ax1.set_ylim(-0.25, 1.25)
ax1.set_ylabel('Reward')
ax1.set_xlabel('Time steps')
ax2.set_ylabel(f"$X^2(s=CC,a=C)$")
ax2.set_xlabel(f"$X^1(s=CC,a=C)$")

# Create legend
custom_lines = [Line2D([0], [0], color='gray', ls='--', lw=1),

Line2D([0], [0], color='gray', ls=':', lw=1)]
ax1.legend(custom_lines, ['Agent 1', 'Agent 2'], ncol=2, bbox_to_anchor=(1,1),

loc='lower right')

# Save plot
plt.savefig('_figs/fig_04DynamicRegimes.png', dpi=150)

Figure 7.1: Different dynamic regimes in CRLD applied to repeated Prisoner’s Dilemma with agents
adopting memory-one strategies (i.e., their next action depends on the joint action of the
previous round). Such a system is equivalent to a stochastic game with four states (CC,
CD, DC, DD), which encode the agents’ previous behavior. The graphs show the dynamics
for three different initial memory-1 strategies.
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7.4 Find initial strategy

Last, we show how to find an initial strategy that leads to a dynamic regime other than the convergence
to a fixed point.

# If necessary, create multi-agent environment interface from scratch
env = he(PD(R=1.0, T=1.25, S=-0.25, P=0), (1,1,1))
MAEi = stratAC(env=env, learning_rates=0.1, discount_factors=0.99)

# Compute trajectories for some random initial strategies
# and see whether they did not reach a fixed point.
print("No fixed point reached for trajectories:")
xtrajs = []
Tmax = 2500 # Convergence-time threshold
for i in range(500):

X = MAEi.random_softmax_strategy()
xtraj, fpr = MAEi.trajectory(X, Tmax=Tmax, tolerance=10**-5)
xtrajs.append(xtraj)

if not fpr:
print(i, end=' ')

No fixed point reached for trajectories:
142 238 487

We check that the center of the distribution of convergence times is well below the convergence-time
threshold.

plt.figure(figsize=(3,2))
hist = plt.hist([len(xt) for xt in xtrajs], bins=25)
plt.plot([Tmax, Tmax], [0, 1.1*max(hist[0])], c='red')
plt.ylim(0, 1.1*max(hist[0]))
plt.xlabel("Convergence timesteps")
plt.ylabel("Count");

Figure 7.2: Histogram of convergence times.

Last, we examine the non-convergent trajectories in the strategy phase space of all environmental
states of the memory-one Prisoner’s Dilemma.
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xt, fpr = MAEi.trajectory(xtrajs[238][0], Tmax=2500, tolerance=10**-5)

x = ([0], [0,1,2,3], [0]) # which (agent, observation, action) to plot on x ax
y = ([1], [0,1,2,3], [0]) # which (agent, observation, action) to plot on y ax
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
ax = fp.plot_strategy_flow(MAEi, x, y, action_probability_points, NrRandom=32,

conds=MAEi.env.Sset)
fp.plot_trajectories([xt], x=x, y=y,

cols=['red'], lws=[2], lss=['-'], alphas=[0.5], axes=ax);
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8 Simulation Scripts

Here we introduce scripts which support the simulation of CRLD.

#| hide
from nbdev.showdoc import *

#| default_exp SimulationScripts

#| export
import numpy as np
import matplotlib.pyplot as plt
from skopt.sampler import Lhs
from skopt.space import Space
import hashlib

8.1 Create initial strategies

#| exports
def initial_strategies(MAEi, # Multi-agent environment interface

number:int, # Number of strategies to create
iterations:int=1000 # Latin hyper cube sampling parameter
)->np.ndarray: # Array of initial strategies

"""
Create a set of inital strategies using latin hyper cube sampling
"""
assert MAEi.M == 2, 'Sampling for M>2 not straightforward'
# https://www.egr.msu.edu/~kdeb/papers/c2018010.pdf
# https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf

eps = 10**(-6)
space = Space(MAEi.N * MAEi.Q * (MAEi.M-1)*[(0.0+eps, 1.0-eps)])

# generate latin hyper cubes
lhs = Lhs(criterion="maximin", iterations=iterations)
x = lhs.generate(space.dimensions, number, random_state=42)
x = np.array(x).reshape(number, MAEi.N, MAEi.Q, MAEi.M-1)

# complete and normalize
inits = np.zeros((number, MAEi.N, MAEi.Q, MAEi.M))
inits[..., 0] = x[...,0]
inits[..., 1] = 1 - x[...,0]
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return inits

For example,

class mae: N=3; Q=4; M=2 # dummy MAEi for demonstration only
Xs = initial_strategies(mae, 7)
Xs.shape

(7, 3, 4, 2)

8.2 Compute trajectories

#| exports
def compute_trajectories(MAEi, # Multi-agent environment interface

inits, # Iterable of inital conditions
Tmax=1000, # Number of maximum iteration steps for each

run↪

tol=10e-5 # Tolerance to classify a trajectory as
converged↪

)->tuple: # (iterables of trajectories,
fixed-point-reacheds)↪

"""
Compute learning trajectories from a set of inital strategies.
"""
trjs = []; fprs = []
leni = len(inits)

for xi, x0 in enumerate(inits):
print("\r ", np.round(xi/leni, 4), end='')
x = x0.copy()

trj, fpr = MAEi.trajectory(x, Tmax=Tmax, tolerance=tol)

trjs.append(trj)
fprs.append(fpr)

print()
print('Computed', leni, 'trajectories')

return np.array(trjs, dtype=object), np.array(fprs)

After computing the trajectories, we can check whether or not all converged and look at the histograms
of their lengths:
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#| exports
def check_run(trjs, # Iterable of learning trajectories

fprs=None): # Iterable of bools whether a fixed point was reached
"""
Perform some checks for an iterable of learning trajectories
"""
if fprs is not None:

print('Unique fixed points reached:', np.unique(fprs))
plt.hist([len(traj) for traj in trjs], bins=20);
plt.title('Histrogram of trajectories lengths')

8.3 Saving & reloading

To not recompute everything from scratch, we save runs to disk and retrieve them more efficiently and
faster when needed.

#| exports
def _transform_tensor_into_hash(tens):

"""Transform `tens` into a string for filename saving"""
r = int(hashlib.sha512(str(tens).encode('utf-8')).hexdigest()[:16], 16)
return r

#| exports
def obtain_trajectories(MAEi, # Multi-agent environment interface

inits, # Iterable of inital conditions
Tmax=1000, # Number of maximum iteration steps for each run
tol=10e-5, # Tolerance to classify a trajectory as

converged↪

ddir='data', # Path to data directory to store the results
verbose=1 # Verbosity level
)->tuple: # (iterables of trajectories,

fixed-point-reacheds)↪

"""
Obtain learning trajectories from a set of inital strategies.
Check wether you can load them from disk. If yes, do so. If not, compute.
"""
fn = ddir + '/' + MAEi.id() + '_' + str(_transform_tensor_into_hash(inits))
fn += ".npz"

try:
dat = np.load(fn, allow_pickle=True)
ddic = dict(zip((k for k in dat), (dat[k] for k in dat)))
print("Loading ", fn) if verbose else None

except:
print("Computing ", fn) if verbose else None
trjs, fprs = compute_trajectories(MAEi, inits, Tmax=Tmax, tol=tol)
check_run(trjs, fprs)
# rtrajs = obtain_rewards(AEi, �trajs)
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ddic = dict(trjs=trjs, fprs=fprs)
np.savez_compressed(fn, **ddic)
dat = np.load(fn, allow_pickle=True)
ddic = dict(zip((k for k in dat), (dat[k] for k in dat)))

return ddic['trjs'], ddic['fprs']

8.4 Final rewards

#| exports
def final_rewards(MAEi, # Multi-agent environment interface

trjs # Iterable of learning trajectories
)->np.ndarray: # Array of final rewards

"""
Compute final rewards from a set of learning trajectories.
"""
rews = []
for trj in trjs:

x = trj[-1].astype(float)
rs = np.einsum(MAEi.Ps(x), [0], MAEi.Ris(x), [1,0], [1])
# rs = MAEi.Ri(x)
rews.append(rs)

return np.array(rews)

#| hide
import nbdev
nbdev.export.nb_export("08_SimulationScripts.ipynb", "_code")
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