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Preface

To my dad, the enthusiast of online lecture materials in Python.

These lecture notes (Web, PDF, Google Colab) provide an integrated perspective on different model-
ing approaches (dynamics, equilibrium, and agent-based) applied to human-environment interactions
and sustainability transitions. Its scope is practical, utilizing Python within Jupyter Notebooks. Pre-
requisites are basic mathematical skills.

This is version 0.2. To be updated and improved.

Learning goals

After working through all materials,

• students can model human-environment interactions to answer relevant questions in sustain-
ability science.

• students can implement models of human-environment interactions in the general-purpose
computer language Python.

• students can critically evaluate models of human-environment interactions to judge their rele-
vance to issues in sustainability science.

Integrated writing and reproducibility

The following steps are entirely optional for readers who want to focus on the learning goals and are
not interested in the development of these lecture notes.

These lecture notes are written in Jupyter Notebooks, which are a popular format for interactive
computing. Notebooks contain code, math, and text. The code is written in Python, a general-
purpose programming language widely used in scientific computing and other fields.

Scholarly writing practices, such as citations and cross-references, are facilitated by Quarto, a powerful
scientific and technical publishing system. Quarto also allows you to view these lecture notes in various
formats, such as HTML and PDF.

Assuming you have installed the Quarto CLI, you can render these lecture notes by running the
following command in the terminal:

!quarto render .

The comment #| output: false is a Quarto directive that prevents the output of this cell from being
displayed in the rendered documents. This is useful for keeping these readable.

These lecture notes are made open-source and hosted in a GitHub repository. To convert this
index.ipynb file (which is required in the Quarto Book project type) into the repository’s README
file, one may execute the following commands:
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!quarto convert index.ipynb # convert into Quarto markdown
!tail -n +10 index.qmd > README.md # remove some metadata+
!rm index.qmd # remove the intermediate file

After configuring the settings for GitHub Pages, one can publish the web version of these lecture notes
by running the following command (at the root of the cleaned main branch):

quarto publish gh-pages

Acknowledgements

I am grateful to all the students I had the pleasure of working with on this material. Their feedback
has been, is, and will continue to be essential for shaping this content. I would also like to thank
my teachers and mentors, who have influenced my thinking. I am thankful to all contributors and
creators of the many open-source projects these notes build upon, such as the Python language and
its ecosystem, Jupyter, and Quarto. Furthermore, I acknowledge many helpers who may use some
form of generative AI, such as ChatGPT, Perplexity, GitHub Copilot, and Grammarly. All remaining
errors remain my own.
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1 Sustainability Systems Science

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

This chapter introduces the basic rationale for sustainability systems science, i.e.,
complex systems modeling and its application to human-environment interactions and
sustainability transitions.

1.0.1 Learning goals

After this chapter, students will be able to explain:

• Why sustainability transitions require a coupled systems approach.
• Why we must model, and how do it well?
• Systems reductionism and its relation to complex systems.
• Structural challenges for sustainability transitions and three types of models to tackle them.

1.1 Human-environment interactions for sustainability transitions

1.1.1 The state of the planet

Watch this TED talk by Johan Rockström, who offers the 2024 scientific assessment of the state of
the planet and explains what must be done to preserve Earth’s resilience to human pressure.

While watching, ask yourself the following questions (and make notes around your answers):

• What are the main challenges facing humanity in the 21st century?
• In which ways humans and the environment are interconnected?
• What is the most impressive fact you learned from the talk?

1.1.2 Why are we not acting?

Given the rather grim assessment of the planet’s state, the question arises: Why are we not acting
more toward a safe and just future for all

• despite all the scientific progress we have made so far,
• despite all the knowledge about the risks and undesirable consequences ahead if we do not change

our course of action,
• despite all the knowledge we have obtained about possible solutions?

Reflect on this question on your own. Come up with a list of factors most relevant to you.
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1.1.3 A failure of systems thinking

According to John Sterman, professor and director of the MIT System Dynamics Group, the underlying
issue of inaction in the sustainability crises is a massive failure of systems thinking.

Watch the part of his talk (from minutes 12:19 until 14:17) where he explains this failure and compare
his assessment with your own from above. Did he miss some critical factors? How can we
complement his assessment?

These lecture notes offers a comprehensive and opinionated, but foremost, practical introduction to
the field of complex systems modeling applied to human-environment interactions and sustainability
transitions.

1.2 Modeling

1.2.1 We cannot not model

In information theory, a bit (i.e., a 0 or a 1) stores the answer to a yes-or-no question. We can measure
the rate of information transmitted with the number of bits per second.

Figure 1.1: We cannot not model - Human physiology requires simplification

For example, it is known that our senses gather some 11 million bits per second from the environment
(britannica.com). When applied to the human brain, you expect it to show tremendous information
processing capability.

Interestingly, when researchers attempted to assess information processing capabilities during “intelli-
gent” or “conscious” activities—like reading or playing the piano—they found a maximum capability
of under 50 bits per second (Figure 1.1). For instance, a typical reading speed of 300 words per
minute translates to about five words per second. Assuming an average of five characters per word
and roughly two bits per character results in that 50 bits per second figure. The precise number can
vary based on assumptions and may differ according to the individual and the specific task.

Thus, a tremendous amount of compression occurs if 11 million bits are reduced to less than 50. Our
human physiology requires simplifaction. We model all the time. Note that the discrepancy
between the amount of information being transmitted and the amount of information being processed
is so large that any inaccuracy in the measurements is insignificant.
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1.2.2 All models are wrong

A model is a simplified representation of reality.

A model’s simplification is necessary to make the phenomenon under question tractable and under-
standable. Simplifaction here is a feature, not a bug (Smaldino, 2017). The purpose of a model is
to be wrong.

The models we use come in different forms or media.

Figure 1.2: Different model forms or media

Some are informal and qualitative, while others are more formal and quantitative (Figure 1.2). Mental
models are intuitive and often subconscious. Verbal models describe concepts through language.
Both model media can be vague and open to multiple interpretations, giving an illusion of understand-
ing without precise clarity (Smaldino, 2017). Furthermore, the last 100,000 years of evolution have
shaped Homo sapiens in ways that make it difficult for us to comprehend a dynamic, unstable, and
unpredictable world. Our brains evolved to manage immediate, short-term situations and anticipate
gradual, linear changes with a tendency to seek balance and stability (Raworth, 2017). Thus, we must
make a conscious effort to overcome these cognitive priors. Formal models can help with that.

Pictorial models enhance understanding through visual representations. Take, for example, maps,
and diagrams, but also artistic paintings. Mathematical models use equations to quantify rela-
tionships, providing greater precision. Computer models require the highest level of precision; all
entities and causal mechanisms must be defined unambiguously to allow a computer simulation to
operate. This high level of precision makes them essential for scientific research and understanding.
However, our subconscious mental models often have the highest impact on how we perceive and act
in the world.

Thus, we will develop primarily formal mathematical and computational models in this book. However,
this will automatically refine our mental and verbal models.

The challenge of informal models

Proverbs are a good example of mental models that are passed down through the generations. They
concisely convey wisdom. However, they are often contradictory and provide no guidance on how
to act. For example, consider the following proverbs (Page, 2018):

10



Proverb: Tie yourself to the mast Opposite: Keep your options open

Proverb: The perfect is the enemy of the good Opposite: Do it well or not at all

Proverb: Actions speak louder than words Opposite: The pen is mightier than the sword

The power of informal models

To illustrate the power of mental models, consider the following riddle:

A father and son are in a horrible car crash that kills the dad. The son is rushed to the
hospital; just as he’s about to go under the knife, the surgeon says, “I can’t operate – that
boy is my son!” � � How can this be?

Regardless of how obvious (or not) the answer appears to you, watch this video in which people in
Vienna are asked this question (Autotranslation helps if you do not speak German). Observe their
reactions when their mental models are updated (from minute 1:38 on).

We observe that modeling is an iterative process. When recognizing a mismatch between our
models and reality, we get the opportunity to refine our models, and so gradually, we might become
less wrong (Smaldino, 2017). Creating formal models of the systems we care about is the only
method to achieve this in a structured, deliberate, and controlled manner.

However, as it is the defining feature of a model to simplify or, in other words, to be wrong, making
them more true cannot be the purpose of a model per se. But, what makes a model useful?

1.2.3 Some models are useful

There is no universally agreed-upon classification of model use cases. I tend to distinguish between
four clusters of model use cases (Figure 1.3): 1) Understanding & explaining, 2) Communication &
learning, 3) Prediction & forecasting, and 4) Decision-making & action.

Figure 1.3: Possible model use cases
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Understanding & Explaining

Understanding and explaining phenomena may occur in various ways. For example, models help clar-
ify assumptions (Smaldino, 2017), allowing for a more transparent assessment of their implications
and conclusions. Models help us to reason, i.e., to identify conditions and deduce logical implications.
They also can provide (testable) explanations for empirical phenomena. (Page, 2018) And, models
are helpful to explore, i.e., to consider different “what if” scenarios to investigate possibilities and
hypotheticals (Page, 2018; Smaldino, 2017).

Communication & Learning

Formal models can serve as tools to overcome our cognitive limitations. They help in system-
atizing and synchronizing our understanding, ensuring that we discuss the same concepts and avoid-
ing ambiguity that often accompanies verbal models.(Smaldino, 2017) Models can guide scientific
questions. The precise specification of components and their relationships in a model helps clarify
scientific questions and distinguishes them from unfalsifiable pseudo-theories (Smaldino, 2017).

Prediction & Forcasting

Prediction refers to making numerical and categorical predictions of future and unknown phenomena.
Historically, explanation and prediction were often linked closely together. However, prediction
differs from explanation. A model can predict without explaining. Deep learning algorithms
can predict product sales, tomorrow’s weather, price trends, and specific health outcomes; however,
they provide minimal explanation. Also, a model can explain without predicting. Ecology models
can explain speciation patterns but cannot predict new species (Page, 2018). Related concepts to
prediction are forecasting and projections, which can mean various things in different contexts.

Decicion-making & Action

Formal models help design institutions, policies, and rules by providing frameworks for contemplating
the implications of choices. Combining this process with empirical data, formal models are helpful for
action, guiding policy choices and strategic actions of governments, corporations, and nonprofits
(Page, 2018). Likewise, good mental models are helpful for good actions in our everyday lives.

It is important to note that, in general, a single model does not fulfill all use cases.

Some models might do, like, for example, Newtonian mechanics. It explains the motion of objects,
predicts their future positions, guides the design of machines, and is learned in schools worldwide.
However, in most instances, this is not the case. A model might explain a phenomenon but cannot
predict it or vice versa. A helpful model for decision-making might neither make accurate predictions
nor explain the underlying mechanisms. Take macroeconomic models as an example.

Beyon being useful or not, are there some quality criteria a good model should fulfill?

1.2.4 Some models are good

I argue that there are some quality criteria that make a model a good model. A good model must
be

• coherent
• transparent, and
• sparse.
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Coherence

Coherence means that the model is consistent. It does not contain contradictions or logical errors.
Consider, for example, the proverbs from above.

A model can resolve these contradictions by specifying the conditions under which a particular state-
ment holds. For example, under some conditions, it is best to tie yourself to the mast, while under
others, it is best to keep your options open. A model can help to clarify these conditions.

This requirement of coherence or consistency imposes a set of helpful constraints within which
the model development can take place.

Transparency

A good model makes its assumptions explicit and transparent. It also openly discusses its limita-
tions. Bonus points if the model is transparent about uncertainty in empirical data, parameters, and
processes. Transparency is a prerequisite for a model to be useful for communication and learning.

Sparsity

You should take the simpler model if you have two competing models of equal quality regarding their
use case. This is also known under the term Occam’s razor or the principle of parsimony. This
principle helps us avoid going overboard with introducing new assumptions, entities, and processes
into our models, making our models overly complex and difficult to understand without further ben-
efit. However, sometimes, during the modeling process, we are unsure whether a newly introduced
assumption is helpful to explain the phenomenon under question. Thus, for model development, the
principle of parsimony is a guideline, not a strict rule. As the famous saying goes

You should make things as simple as possible, but not simpler.

1.3 Systems reductionism

Given that we cannot not model, how should we make sense of the world?

1.3.1 Classical reductionism

With classical reductionism, I refer to the ideas of rationalism and empiricism that have dominated
Western science since the last great transformation, the Enlightenment. Replacing religious dogmatism,
this view argues, that

the whole can be understood from its parts.

For example, this approach has been highly successful in physics and chemistry, where the behavior
of atoms and molecules can be understood by studying their interactions.

As a result, scientific disciplines tend to be hierarchically clustered around specific parts of the whole.
For example, the German Research Association (DFG) clusters disciplines around the engineering,
life, natural, and humanities and social sciences (Figure 1.4). Within each cluster, there are multiple
disciplines with subdisciplines.

Classical reductionism produced a lot of experts. Together, they drove the massive increase in
wealth, health, and knowledge in the last 200 years.
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Figure 1.4: DFG classification of scientific disciplines

1.3.2 The problem with experts

Experts carry a risk of overrating the importance of their area of expertise (Brockmann, 2021). At the
same time, experts tend to overlook the interactions within and beyond the system under investigation
(Figure 1.5).

Figure 1.5: The problem with experts

These problems with classical experts become particularly problematic in complex systems, which
are characterized by their interactions.

1.3.3 Complex systems

The study of complex systems started around the 1950s and has been a diverse endeavor since then.
See, for example, the map of complexity science.

In a complex system,
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the whole is more than the sum of its parts.

The whole, the so-called macro-level, emerges from and feeds backs to the so-called micro-level, in
which (often many, heterogeneous) entities or agents interact (in often non-linear ways) in a shared
environment. Both levels are out-of-equilibrium, continuously evolving (Figure 1.6).

Figure 1.6: Properties of a complex system

To illustrate the idea of emergence, where the whole is more than the sum of its parts, consider the
following quote:

“There’s no love in a carbon atom, No hurricane in a water molecule, No financial collapse
in a dollar bill.” – Peter Dodds

To observe a complex system in action, enjoy a video of bird flocking behavior. A century ago, the
wonders of these highly coordinated yet leaderless flocks led people to believe that telepathy might be
what guided these birds (phys.org).

See complexityexplained.github.io for more background information on complexity science.

So, what can we do to make sense of complex systems, given our limited information
processing capacity and the consequences that we cannot not model?

1.3.4 Systems reductionism

To quote one of the founding fathers of complexity science,

“It may not be entirely vain, however, to search for common properties among diverse kinds
of complex systems” – Herbert Simon

As it turns out, flocking behavior, for example, can be explained by just three rules: separation,
alignment, and cohesion (wikipedia.org/boids, Figure 1.7).

Systems and classic reductionism complement each other (Figure 1.8). While classical reduc-
tionism helps understand the parts of a system, systems reductionism helps understand the interactions
between these parts. Collaboration between the two approaches is key.

Conceptually, complex systems modeling combines the practice of (formal) modeling with
the ideas of systems reductionism.
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Figure 1.7: The three rules to produce flocking behavior

Figure 1.8: Systems and classic reductionism complementing each other
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1.4 Sustainability Systems Modeling

This section conceptually synthesizes the practice of complex system modeling applied to the problem
field of sustainability transitions and human-environment interactions.

1.4.1 Structural challenges

To operationalize systems thinking for human-environment modeling, we require a collection of the
structural elements and processes that either hinder or may foster action toward sustainability.

Summarizing many fantastic review and perspective papers (Constantino et al., 2021; Elsawah et al.,
2020; Farahbakhsh et al., 2022; Giupponi et al., 2022; Levin & Xepapadeas, 2021; Müller et al., 2020;
Schill et al., 2019) we obtain the following list of structural challenges for sustainability transitions
(Figure 1.9): Complex system models of human-environment interactions must account for the dy-
namics of the collective behavior emerging from cognitive agents within an environmental
context (Barfuss, Flack, et al., 2024). They must also adhere to the good modeling practices of
coherence, transparency, and sparsity, as discussed above.

Figure 1.9: Structural challanges for sustainability transitions

Cognitive agency �

Improving the representation of human behavior in models of social-ecological systems and human-
environment interactions is a critical challenge (Constantino et al., 2021; Schill et al., 2019; Schlüter
et al., 2017). Humans are neither hyper-rational nor overly simplistic, as many models assume. At
the very least, they are cognitive agents who perceive their current environmental context, evaluate it
and their options, make decisions, and act accordingly.

Environmental context �

The environmental context refers to the decision-making challenge the agents face. The environmental
context is not static. It may change smoothly or abruptly, based on human activities or via inherent
dynamics. For example, climate damages gradually worsen with increasing global mean temperature.
And crossing climate tipping points may abruptly lead to catastrophic outcomes. Furthermore, these
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changes are not certain but stochastic in nature and may only be partially observable by humans.
And often, the consequences of action are heavily delayed, impacting future generations. All these
attributes make collective action for sustainability transitions tremendously challenging.

The environmental context includes the biophysical environment, such as the climate, biodiversity,
and resources, as well as the social environment, out of which the collective behavior emerges.

Collective behavior �

From cognitive agents within an environmental context, collective behavior emerges. This collective
behavior depends on the social context, the heterogeneity of the agents, the interaction structure
between them, and the scale on which they operate. Collective behavior refers to the dynamics of the
system as a whole, which are not easily reducible to the characteristics of individual agents.

Dynamics �

Our primary goal is to comprehend and advance sustainability transitions. Transitions are fundamen-
tally dynamic in nature, so our modeling approach must reflect this dynamism, integrating non-linear
feedback loops and critical transitions. Furthermore, the concepts of stability and resilience demand
a dynamic viewpoint. Before a system reaches stability, its transient evolution offers crucial insights
into the sustainability transitions itself.

How can we begin to make sense of this all?

What precisely do all of these elements mean?

And how do all of these elements relate to each other?

These questions will guide us through the following chapters.

We will tackle them with the help of a useful framework from transdisciplinary research: the three
types of knowledge, applied to modeling.

1.4.2 Three types of models

When addressing societal challenges, the concept of the three types of knowledge helps to produce
not only knowledge on problems but also knowledge that helps to overcome those problems (Buser &
Schneider, 2021). In general, the concept applies to all research methodologies. We will specifically
discuss it in the context of formal modeling, transforming it into three types of models (Figure 1.10).

The three types of models are:

Dynamic-systems models

Dynamic-systems models operationalize systems knowledge, typically understood as knowledge
concerning the existing system or issue. This understanding is primarily analytical and descriptive.
For instance, in the context of sustainability transitions, systems knowledge assesses the risk triggering
climate tipping points, biodiversity loss dynamics, or a specific region’s social-ecological dynamics.
Systems knowledge is strongly associated with facts and asks what is?

In this regard, dynamic-systems models are often used to understand the system’s behavior under
specific conditions.

We will discuss dynamic-systems modeling in the first part of these lecture notes, covering
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Figure 1.10: Three types of models based on three types of knowledge for transdisciplinary reserach

• Nonlinearity and feedback loops in Chapter 02.01
• Tipping elements and regime shifts in Chapter 02.02
• Resilience in Chapter 02.03, and
• Stochastic state transitions in Chapter 02.04.

Target-equilibrium models

Target-equilibrium models operationalize target knowledge, which is knowledge about the desired
future and the values that indicate which direction to take. It relies on deliberation by different
societal actors and is based on values and norms. In sustainability transitions, ways of producing
target knowledge include participatory vision, scenario development with a wide range of stakeholders,
and the public discourse at large. Target knowledge is strongly associated with values and asks what
ought to be?.

Target-equilibrium (or equilibrium-based models applied to sustainability transitions) are primarily
used in economics. In theory, the equilibrium is the outcome of an optimization procedure where the
specified normative target is reached.

We will discuss target-equilibrium modeling in the second part of the book, covering

• Sequential decisions of a single agent in a dynamic environment in Chapter 03.01
• Strategic interactions of multiple agents in a static environment in Chapter 03.02, and
• Strategic interactions of multiple agents in a dynamic environment in Chapter 03.03.

Transformation-agency models

Transformation-agency models operationalize transformation knowledge, which is knowledge about
how to move from the existing system to the desired future. This knowledge includes concrete strate-
gies and steps to take. In sustainability transitions, producing transformation knowledge could involve
developing policy instruments, designing new institutions, or implementing new technologies. Trans-
formation knowledge is strongly associated with agency and asks how to?.
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Transformation-agency models (or agent-based models applied to sustainability transitions) are a
flexible tool that combines the dynamics of how to get to a desired outcome with agency that defines
what is desirable and possible to do.

We will discuss transformation-agency modeling in the third part of the book, covering

• Rule-based behavioral agency in agent-based models in Chapter 04.01
• Individual reinforcement learning in Chapter 04.02, and
• The non-linear dynamics of reinforcement learning in Chapter 04.03.

It is important to note that the three knowledge types are interdependent. For example, knowl-
edge about ‘how to’ would be of limited use or even dangerous if it was not oriented toward desirable
target values and based on sound facts. In the same vein, we will integrate the different types of
models toward the end of this book.

1.5 Learning goals revisited

• Understanding and promoting sustainability transitions requires a coupled human-
environment systems approach, as the challenges and possible solutions are tightly
coupled between humans and the biosphere.

• Limited human information processing demands us to model the world around us. Formal
models help overcome imprecise mental models and cognitive limitations. Models are
helpful for understanding, communicating, predicting, and making decisions. Good models
are coherent, transparent, and sparse.

• Systems reductionism complements classical reductionism to avoid unintended side
effects in complex systems. Complex systems are characterized by interactions, emergent
properties, and feedback loops.

• Complex systems models of human-environment interactions must account for the dynamics
of the collective behavior emerging from cognitive agents in environmental contexts.
Three types of models, dynamic-systems model, target-equilibria models, and transformation-
agency (agent-based) model, will help us achieve these desiderata.

The exercises for this chapter offer a thorough introduction to the programming language Python,
preparing you for the modeling exercises in the subsequent chapters.
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Part I

Dynamic Systems
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In this part, we cover dynamic-systems models. They operationalize systems knowledge, typically
understood as knowledge concerning the existing system or issue. This understanding is primarily
analytical and descriptive. For instance, in the context of sustainability transitions, systems knowledge
assesses the risk triggering climate tipping points, biodiversity loss dynamics, or a specific region’s
social-ecological dynamics. Systems knowledge is strongly associated with facts and asks what is?

In this regard, dynamic-systems models are often used to understand the system’s behavior under
specific conditions.

Figure 1.11: Three types of models based on three types of knowledge for transdisciplinary reserach

Specifically, we will cover

• Nonlinearity and feedback loops in Chapter 02.01
• Tipping elements and regime shifts in Chapter 02.02
• Resilience in Chapter 02.03, and
• Stochastic state transitions in Chapter 02.04.
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2 Nonlinearity

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

2.1 Motivation

2.1.1 The issue of climate change

Read the following summary, adapted from the Intergovernmental Panel on Climate Change (IPCC)
Third Assessment Report’s Summary for Policymakers.

Figure 2.1: The issue of climate change

Now consider the following questions:
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Figure 2.2: A scenario of climate change

Typical responses. This experiment was conducted with MIT graduate students, a group of highly
educated adults (Sterman & Sweeney, 2007). Yet, they showed a widespread misunderstanding of
fundamental stock and flow relationships. Most subjects believed that atmospheric greenhouse gas
(GHG) can be stabilized while emissions into the atmosphere continuously exceed the removal of GHGs
from it.

Figure 2.3: Typical Responses

These beliefs support wait-and-see policies and neglecting the issue climate change as a top priority
for the policy agenda.

2.1.2 Carbon bathtub

Knowledge of climatology or calculus is not needed to respond correctly. Think of it like a bathtub:
the water level represents the amount of greenhouse gases (GHGs) in the atmosphere. The water
flowing into the tub is like the rate of GHG emissions, and the water flowing out is like the rate of
GHG removal. If more water is flowing in than out, the water level rises. To keep the water level
stable, the inflow and outflow need to be equal. This is similar to stabilizing GHG concentrations
- emissions must equal removals. The balance between inflows and outflows determines how GHGs
accumulate, not just the level of inflows.
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Figure 2.4: Carbon Bathtub

2.1.3 Learning goals

After this chapter, students will be able to:

• Define and describe the components of a dynamic system.
• Represent dynamic system models in visual and mathematical form.
• Explain the concepts of feedback loops and delays.
• Explain two kinds of non-linearity and how they are related.
• Implement dynamic system models and visualize model outputs using Python, to interpret

model results.
• Analyze the stability of equilibrium points in dynamic systems using linear stability analysis.

After motivating this chapter, we make ourselves ready for some computations by importing some
Python libraries and setting up the plotting style.

import numpy as np
import scipy
import matplotlib.pyplot as plt
from ipywidgets import interact

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪
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2.2 Dynamic systems

A dynamic system1 is a system whose state is uniquely specified by a set of variables and
whose behavior is described by predefined rules.

You can think of the state of the system as a collection of stocks (also known as state variables), and
the rules as the flows that change the stocks over time. At the system boundaries, you can imagine
sources and sinks, which represent in- and out-flows to the system we are currently looking at.

For example, in the case of the carbon bathtub, the state of the system is the amount of carbon
in the atmosphere. The rules are that emissions increase and net removals decrease the amount of
carbon in the atmosphere. The source is the origin of emissions, and the sink where the net removals
go (i.e., mostly ocean and biosphere). Both, source and sink, are not explicitly represented in this
model - but could be in another model.

2.2.1 Pictorial representation

Graphically, we can compose (often called) stock-and-flow or causal (loop) diagrams via the following
building blocks.

Figure 2.5: Graphical elements of a dynamic system

For instance, the carbon bathtub could resemble this:

Figure 2.6: Graphical elements of a dynamic system

1In mathematics, the term “dynamical system” is more commonly used. But there is also the related field of “system
dynamics”, with its own scientific community. I don’t want to get into the details of the differences between these
two fields. For the purpose of this course, we will use the term “dynamic system” to refer to the overarching ideas.
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Such pictorial models are a powerful tool to develop a dynamic systems model and communicate its
structure. However, they are limited regarding specifying model details and analysis. For this, a
mathematical representation is essential.

2.2.2 Mathematical representation

Mathematically, we use variables (such as 𝑥, 𝑦, and any other letter) as a placeholder for the value
of a stock. We indicate the value at a specific time 𝑡 by an index (such as 𝑥𝑡, 𝑦𝑡, etc.), assuming
that time advances in discrete steps, i.e., 𝑡 ∈ ℤ. To describe the change of stocks, we formulate
an equation (with +’s and −’s for positive and negative changes). In its most general form, it looks
like,

𝑥𝑡+1 = 𝐹(𝑥𝑡).

This means the value of the stock 𝑥 at time 𝑡+1 equals the value of the function 𝐹 , which depends on
the value of stock at time 𝑡. Note that another common name for dynamic systems in discrete time is
maps.

For example, the carbon bathtub equations look like,

𝑥𝑡+1 = 𝑥𝑡 + 𝑒𝑡 − 𝑜𝑡,

where 𝑥 denotes the atmospheric carbon stock, and 𝑒𝑡 ≥ 0 and 𝑜𝑡 ≥ 0 the amount of emissions and
outflow at time 𝑡.
This equation shows that the stock at time 𝑡+1 equals the stock at time 𝑥𝑡 plus the inflow of emissions
at time 𝑒𝑡 minus the outflow at time 𝑜𝑡. Thus, what ultimately determines the stock at time 𝑡 + 1 is
the difference between the emissions and the outflow at time 𝑡. Let 𝑛𝑡 = 𝑒𝑡 − 𝑜𝑡 be the net flow. Then,
we can rewrite the equation as

𝑥𝑡+1 = 𝑥𝑡 + 𝑛𝑡.

Note that 𝑛𝑡 can be positive or negative, depending on the emissions and the outflows.

Sometimes, it can be handy to represent the dynamic system in its difference form, directly indicat-
ing the change of stocks,

Δ𝑥 = 𝑥𝑡+1 − 𝑥𝑡 = 𝐹(𝑥𝑡) − 𝑥𝑡.

In analogy to the more common differential equations (which work with continuous time), we call this
form difference equations.

For example, the carbon bathtub difference equations look like,

Δ𝑥 = 𝑒𝑡 − 𝑜𝑡.
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DeepDive | Why discrete-time models

Most dynamical system models consider the continous-time case; but we will focus on discrete time.

Discrete-time models are easy to understand, develop and simulate.

• Computer simulations require time-discretization anyway.
• Experimental data often already discret.
• They can represent abrupt changes.
• They are more expressive using fewer variables than their continuous-time counterparts.

Discrete-time models are a cornerstone in mathematical modeling due to their simplicity and adapt-
ability. They align naturally with computer simulations, as digital systems process time in discrete
intervals. This compatibility makes them essential for precise computational analysis. Additionally,
experimental data is often recorded at specific intervals, such as daily or monthly, fitting seamlessly
with discrete-time models without requiring transformation processes needed for continuous-time mod-
els. These models also excel at representing abrupt changes found in real-world phenomena, such as
population dynamics or financial markets, capturing these shifts more directly than continuous models.
Furthermore, discrete-time models often require fewer variables, enhancing both simplicity and inter-
pretability. This efficiency allows researchers to focus on critical system aspects, making these models
powerful tools for theoretical and practical applications alike. In essence, the strengths of discrete-
time models lie in their alignment with digital computation, natural fit with discrete data, ability to
capture sudden changes, and efficient expressiveness, making them indispensable for scientists and
engineers.

2.2.3 Computational representation

There are, in fact, many ways to translate the pictorial and mathematical models into a computer
model. We start by defining the function, 𝐹(𝑥𝑡), from above but give it a more descriptive name.

def update_stock(stock, inflow, outflow):
new_stock = stock + inflow - outflow
return new_stock

Now, we are ready to perform our first model simulation.

Conceptually, we need to define the initial value of the stock. Let’s assume we start at 280 parts
per million (ppm).

stock = 280

Technically, we must define a container to store the simulation output. We create a Python list for
this purpose and store the stock’s initial value inside.

time_series = [stock]

Conceptually, before we can start the simulation, we must decide how many time steps it should
run, and on the values of inflow and outflow. Let’s simulate 150 steps, denoting yearly updates
from 1850 to 2000, and assume a constant flow with an inflow of 75.6 ppm and an outflow of 75
ppm.

Technically, we loop over the range from 1851 to 2001, calling the update_stock function with the
flow parameter values and appending the new stock value to the time_series list.
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for t in range(1851, 2001):
stock = update_stock(stock, 75.6, 75);
time_series.append(stock)

Finally, we can graphically investigate the output time series of our model simulation.

plt.plot(list(range(1850, 2001)), time_series, '.-');
plt.xlabel('time [years]'); plt.ylabel('stock [ppm]');

Figure 2.7: Linear growth

The above code cell plots the time_series data with dots at each data point and lines connecting
them.

• plt is an alias for matplotlib.pyplot, a popular plotting library in Python.
• plot is a function that creates a 2D line plot.
• list(range(1850, 2001)) represents the values to be plotted along the x-axis.
• time_series is the data being plotted. It is expected to be a sequence of values (e.g., a list or

a NumPy array).
• '.-' is a format string that specifies the style of the plot:

– '.' indicates that the data points should be marked with dots.
– '-' indicates that the data points should be connected with lines.

• The second line equips the plot with an x- and a y-label.

– The ; at the end of each statement allows for multiple statements in one line.

We observe a rise in CO2 concentration from 280 ppm to 370 ppm, as in the observation data.

However, the shape of the curve is different. Here, we observe just a linear trend. The change of
stock equals the net flow of inflows minus outflows. If they are constant, the stock evolution is linear.

Linear here means that the change in stock is proportional to the in and outflows. If they are constant,
the rate of change is constant and the stock evolution is linear.
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2.2.4 A general modeling framework

The carbon bathtub example is perhaps the simplest dynamic model one can imagine. Still, it illus-
trates the importance of differentiating between a stock and a flow, which is changing that stock.

However, the real power of dynamic system models comes from their generality and the possibility
to include feedbacks in the change of stocks.

Dynamic systems are a very general modeling framework. They can model many more phenomena
than the evolution of atmospheric greenhouse gas concentrations, from classic examples, such as the
bouncing of a ball, the swing of a pendulum, and the motions of celestial bodies, to more advanced
dynamics, such as the evolution of populations, the weather and climate, neural networks in the brain,
or the behavior of agents.

For example, the update_stock function we defined above is entirely agnostic regarding which
kind of stock it models. The Python function does not refer to the stock of atmospheric greenhouse
gas concentration. It can model any system with one stock where the stock change is independent
of the current level of the stock. Or, in other words, systems without feedback.

2.3 Feedback

In dynamic systems, feedback means that stock changes depend on current stock levels.

2.3.1 Positive feedback loops

Consider, for example, the following system, pictorially,

Figure 2.8: Positive Feedback Loop

or mathematically,

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑥𝑡 ⇔ Δ𝑥 = 𝑟𝑥

with 𝑟 > 0.
Guess what will happen, given a positive initial stock value.

1) The stock will grow in a straight line.
2) The stock will grow faster, i.e., on an upward-bending curve.
3) The stock will grow slower, i.e., on a downward-bending curve.
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We will find out.

Let’s first define our new update_stock function.

def update_stock(stock, rate):
new_stock = stock + rate*stock
return new_stock

To run the model, i.e., to iterate the update_stock function, we define an iterate_model function.

def iterate_model(nr_timesteps, initial_value, update_func, **update_params):
stock = initial_value
time_series = [stock]
for t in range(nr_timesteps):

stock = update_func(stock, **update_params)
time_series.append(stock)

return np.array(time_series)

This function takes, the number of time steps, the initial stock value as input arguments. Furthermore,
it takes an update_func function and flexible **update_params as arguments, which allows us to use
different stock update functions. It returns a numpy array of stock values over time.

The stock value starts at initial_value. The list time_series is initialized with the starting stock
value. This will store the stock value at each timestep.

Then, a loop runs nr_timesteps times. The update_func function is called in each iteration with
the current stock value and the update_parameters. The result is assigned to stock, updating its
value. The new stock value is appended to the time_series list, which tracks the stock’s value at
each timestep.

For convenience, we will also define a plot_stock_evolution function, plotting the stock evolution.

def plot_stock_evolution(nr_timesteps, initial_value, update_func,
**update_parameters):

time_series = iterate_model(nr_timesteps, initial_value,
update_func, **update_parameters)

plt.plot(time_series, '.-', label=str(update_parameters)[1:-1]);
plt.xlabel("Time steps"); plt.ylabel("Stock value");
return time_series

The plot_stock_evolution function calls the iterate_model function with the given parameters
and plots the time_series on the axis, with the format '.-' (dots connected by lines) and a
legend label indicating the parameters used. The str(update_parameters)[1:-1] converts the
update_parameters dictionary into a string and, with [1:-1], removes the first and last characters
({ and } in the case of a dictionary).

Finally, the function returns the time_series list, which contains the stock values at each timestep.

For example, let’s consider the phenomenon of CO2 emissions.

Our stock will be the annual CO2 emissions. We assume that we start with 0.01 gigatons of CO2
emissions around 1750 and assume a constant growth rate of 3.3% per year. Where are we 250 years
later?
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plot_stock_evolution(250, 0.01, update_func=update_stock, rate=0.033);
plt.xlabel("Time steps [years]"); plt.ylabel("Anthropogenic\nCO2 emissions

[GtC/year]"); plt.legend();↪

Figure 2.9: Exponential growth

We reach a level of annual CO2 emissions that resembles the empirical observation; additionally, the
trajectory aligns more closely with the empirical data than the linear growth above (Figure 2.7).

With the generality of dynamic system models in mind, we can regard the simple positive feedback
loop as the meta-level systems structure of the great acceleration. The great acceleration
(Steffen et al., 2015) refers to the hockey-stick-like growth of many socio-economic and environmental
indicators since the mid-20th century (Figure 2.10).

Figure 2.10: The great acceleration

As these developments are not necessarily positive in a normative sense, positive feedback loops are
better called reinforcing feedback loops.
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The worth of a formal model lies in enabling us to conduct “experiments” safely and at low cost.
By adjusting the input parameters, we see how the output shifts. Overall, our goal is to gain deeper
insights into how the output depends on the inputs.

For example, how does the output change if we cut the rate of change in half? How does the
output change if we double the rate?

What do you think?

1) A halved rate leads to about a quarter of the stock at the end, and a doubled rate leads to
about four times the stock at the end.

2) A halved rate leads to about a 16th of the stock at the end, and a doubled rate leads to about
four times the stock at the end.

3) A halved rate leads to about a quarter of the stock at the end, and a doubled rate leads to
about 16 times of the stock at the end.

4) A halved rate leads to about a 10th of the stock at the end, and a doubled rate leads to about
10 times the stock at the end.

5) A halved rate leads to about a 10th of the stock at the end, and a doubled rate leads to about
100 times of the stock at the end.

6) A halved rate leads to about a 100th of the stock at the end, and a doubled rate leads to
about 10 times of the stock at the end.

Let’s find out.

ts_half = plot_stock_evolution(150, 0.1, update_stock, rate=0.033/2)
ts_norm = plot_stock_evolution(150, 0.1, update_stock, rate=0.033)
ts_doub = plot_stock_evolution(150, 0.1, update_stock, rate=0.033*2)
plt.legend();

Thus, a halved rate leads to about a 10th of the stock at the end:

ts_norm[-1]/ts_half[-1]

11.192852530716676

And a doubled rate leads to about 100 times of the stock at the end:
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ts_doub[-1]/ts_norm[-1]

111.82334406335414

“The greatest shortcoming of the human race is our inability to understand the exponential
function” - Albert Allen Bartlett

In summary, in positive or reinforcing feedback loops, positive stock values cause the stock to
increase proportionally to the stock level, leading to exponential growth.

2.3.2 Negative feedback loops

At first glance, negative feedback loops appear quite similar to positive ones.

Figure 2.11: Negative Feedback Loop

However, here, positive stock values cause the stock to decrease proportionally to the stock value.

Mathematically, we write

𝑥𝑡+1 = 𝑥𝑡 − 𝑟𝑥𝑡 ⇔ Δ𝑥 = −𝑟𝑥

with 𝑟 > 0.
Guess what will happen, given a positive initial stock value.

1) The stock will shrink in a straight line to −∞.
2) The stock will shrink in a straight line to 0.
3) The stock will shrink faster, i.e., on a downward-bending curve to −∞.
4) The stock will shrink faster, i.e., on a downward-bending curve to 0.
5) The stock will shrink slower, i.e., on an upward-bending curve to −∞.
6) The stock will shrink slower, i.e., on an upward-bending curve to 0.

Let’s find out.

Fortunately, there’s no need to create a new Python function. We can just insert negative growth
rates into our current functions.

ts_half = plot_stock_evolution(150, 0.1, update_func=update_stock, rate=-0.033/2)
ts_norm = plot_stock_evolution(150, 0.1, update_func=update_stock, rate=-0.033)
ts_doub = plot_stock_evolution(150, 0.1, update_func=update_stock, rate=-0.033*2)
plt.legend();
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Thus, the stocks shrink faster than linearly toward zero, with more negative growth rates causing
faster decay. This process is also called exponential decay.

Since decay isn’t inherently negative in a normative sense—consider environmental degradation—it’s
more accurate to refer to negative feedback loops as balancing feedback loops.

2.4 Delays

So far, we have considered only instantaneous feedback. The stock change at the next step was
caused directly by the current stock level. This is not always the case.

Delays are a common and crucial feature in many dynamic systems. They result from the time it
takes for a signal to travel to a stock or, vice versa, for a stock to react to a signal.

How can we model the concept of delays in a dynamic system?

In short, we consider systems with multiple stocks.

2.4.1 Example | Economy-Innovation interactions

For example, let’s consider the phenomenon of economic growth. The simplest model explanation
is that economic development (e.g., measured by GDP) directly causes more economic development. A
slightly refined model explanation might be that economic development causes more innovation (e.g.,
measured by number of patents), which in turn causes more economic development.

Figure 2.12: Two models of economic growth
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Both models show a reinforcing feedback loop, so we should expect exponential growth again.
But how do the rates of change relate to each other?

Let’s first define a mathematical model. Let 𝑥𝑡 be the level of economic development and 𝑦𝑡 the
level of innovations at time 𝑡.
Model 1:

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑥𝑡
where 𝑟 > 0 denotes a positive growth rate.

Model 2:

𝑥𝑡+1 = 𝑥𝑡 + 𝑎𝑦𝑡 (2.1)
𝑦𝑡+1 = 𝑦𝑡 + 𝑏𝑥𝑡 (2.2)

where 𝑎 > 0 denotes the rate of converting innovations to economic development and 𝑏 > 0 denotes
the rate of converting economic development to innovations.

Now, we convert the mathematical model into a computational model.

First, we define the update_model functions.

def update_model1(x, r):
x_ = x + r*x
return x_

def update_model2(z, a, b):
x, y = z
x_ = x + a*y
y_ = y + b*x
return x_, y_

Second, we define two plot_evolution functions, detailing the plotting of the economic development
and innovation levels.

def plot_model_evolution1(initial_value, nr_timesteps, **update_parameters):
time_series = iterate_model(nr_timesteps, initial_value, update_model1,

**update_parameters)
plt.plot(time_series, '.--', label="Economy1 | " + str(update_parameters)[1:-1],

color='purple');
return time_series

def plot_model_evolution2(initial_value_x, initial_value_y, nr_timesteps,
**update_parameters):

z = [initial_value_x, initial_value_y]
time_series = iterate_model(nr_timesteps, z, update_model2,

**update_parameters)
plt.plot(time_series[:, 0], '.-', label="Economy2 |
"+str(update_parameters)[1:-1],↪

color='red');
plt.plot(time_series[:, 1], '.-', #label="Innovation2 |
"+str(update_parameters)[1:-1],↪

color='blue');

return time_series
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Last, we define a compare_model function, which sets the initial levels of the economies as identical
and has descriptive parameters for easy interpretation of the model results.

def compare_models(economy=1.0, innovation=1.0, timesteps=20, selfrate=0.2,
innoTOecon=0.01, econTOinno=4.0,↪

ymax=40):
plot_model_evolution2(economy, innovation, timesteps, a=innoTOecon,
b=econTOinno);↪

plot_model_evolution1(economy, timesteps, r=selfrate);
plt.ylim(0, ymax)
plt.legend()

We set the default parameter so that in model 1, there is a default growth rate of 0.2. In model 2,
we assume that innovations take a long time to result in economic development (i.e., the rate from
innovation to the economy is small, a 20th compared to the default rate of model 1, to be precise).
Even if the rate of converting economic development to innovation is 20 times larger than the default
rate, economic growth in model 2 is slower than in model 1.

compare_models()

Figure 2.13: Default Economy-Innovation interactions

How could be boost growth in model 2?

One way could be to increase the number of innovations.

It would require a 20-fold increase in the number of innovations to match the growth rate of model
1. This is also intuitive: if it takes 20 times longer for innovations to result in economic development,
we need 20 times more innovations to achieve the same growth rate. Compare Figure 2.14 with
Figure 2.13.

compare_models(innovation=20)
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Figure 2.14: Economy-Innovation interactions with a 20-fold increase in innovations

Is there another way?

How much would the rate of converting economic development into innovations increase to match
economic growth in model 1?

How much would we need to change the rate of converting innovations to economic development in
model 2 to outperform the economic growth of model 1?

We need to increase either the innovation-to-economy or the economy-to-innovation rate by a factor
of approx. 1.45 to match the sizes of the economies after 20 time periods (Figure 2.15).

fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(121) # LEFT PLOT
compare_models(econTOinno=4.0*1.45)
ax2 = fig.add_subplot(122) # RIGHT PLOT
compare_models(innoTOecon=0.01*1.45)

Figure 2.15: Economy-Innovation interactions with a 1.45-fold increase of a single conversion rate
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Since the innovation-to-economy rate is minimal initially, this might be the more accessible lever to
pull.

A key insight for policy interventions from dynamic system models is that it can be much
more effective to intervene in the systems’ dynamics than in the systems’ state variables.

2.4.2 Example | Economy-Nature interactions

One of the defining themes of this course is that we are embedded in the biosphere. Economic growth
depends on an intact natural environment, whereas current economic practices negatively impact the
state of nature. Let’s assume the following feedback structure.

Figure 2.16: Economy-Nature interactions

Assuming the feedback structure defined in Figure 2.16, we can reuse our code block from above.

Let’s assume that economic and natural capital start at a base level of 1. Economic growth depends
positively on the state of natural capital (assuming a base rate of 0.1). In contrast, natural capital
changes depend negatively on economic capital but on a slower timescale (let’s take a rate of 0.005).
Of course, these parameters serve mainly illustrative purposes.

def plot_EconomyNature(economy=1.0, nature=1.0, timesteps=100, natTOecon=0.1,
econTOnat=-0.005):↪

plot_model_evolution2(economy, nature, timesteps, a=natTOecon, b=econTOnat);
plt.legend()

The economy starts growing linearly while nature degrades. At around 60 periods, the economy reaches
a maximum and enters a recession while nature continues to degrade ({#fig-EconomyNature100}).

plot_EconomyNature()
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Figure 2.17

What happens if we continue the simulation for 1000 periods?

plot_EconomyNature(timesteps=1000)

Figure 2.18

We observe ossilations in the levels of economic and natural capital. The economy grows, but the
environment degrades, leading to an economic recession. The environment recovers, and the economy
starts growing again, leading to another recession. This cycle repeats indefinitely.

Mathematically, this behavior can be explained by the fact, that both economic and natural capital
can have negative values. It is not straitforward to interpret negative values in this context. In effect,
a negative value of economic capital results in a net positive effect on natural capital, and a negative
value of natural capital results in a net negative effect on economic capital, i.e., when enviornmental
damages are high, the economy is likely to suffer.

How special is this ossilatory behavior? Is it due to the specific parameters we chose? Or is it a general
feature of the model structure?

To study the possible behavior of a sytem a bit of theory is useful.
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2.4.3 DeepDive | Autonomous first-order systems are all you need

Here, we make sure that we do note forget to analyze some system structures. We show that so-called
autonomous first-order systems are all we need to model any dynamic system.

In this DeepDive, we answer the question of why we did not consider dynamic equations which take
into account the system state of longer than just one time step ago and why we did not model systems
which depend explicitly on time. The short answer is, we do not need to. These modifications will
not give rise to fundamentally different behavior. We can always represent these modification by
introducing additional state variables.

Let us first introduce some terminology.

A system is called first-order if it depends only on the state of the system at the previous time step.

First-order system: A difference equation whose rules involve state variables of the immediate past
only,

𝑥𝑡 = 𝐹(𝑥𝑡−1).

Higher-order system: Anything else,

𝑥𝑡 = 𝐹(𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3, … ).

A system is called autonomous if it does not depend explicitly on time.

Autonomous system: A dynamical equation whose rules don’t explicitly include time or any other
external variables

𝑥𝑡 = 𝐹(𝑥𝑡−1).

Non-autonomous system: A dynamical equation whose rules do include time or other external
variables explicitly,

𝑥𝑡 = 𝐹(𝑥𝑡−1, 𝑡).

Non-autonomous, higher-order difference equations can always be converted into autonomous, first-
order forms, by introducing additional state variables.

For example, the second-order difference equation,

𝑥𝑡 = 𝑥𝑡−1 + 𝑥𝑡−2 aka the Fibonacci sequence

can be converted into a first-order form by introducing a “memory” variable,

𝑦𝑡 = 𝑥𝑡−1 ⇔ 𝑦𝑡−1 = 𝑥𝑡−2

Thus, the equation can be rewritten as follows

𝑥𝑡 = 𝑥𝑡−1 + 𝑦𝑡−1 (2.3)
𝑦𝑡 = 𝑥𝑡−1 (2.4)

This conversion technique works for any higher-order equations as long as the historical dependency is
finite.

Similarly, a non-autonomous equation
𝑥𝑡 = 𝑥𝑡−1 + 𝑡
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can be converted into an autonomous form by introducing a “clock” variable,

𝑧𝑡 = 𝑧𝑡−1 + 1, 𝑧0 = 0

Then,

𝑥𝑡 = 𝑥𝑡−1 + 𝑧𝑡−1

Take-home message. Autonomous first-order equations can cover all the dynamics of any non-
autonomous, higher-order equations. We can safely focus on autonomous first-order equations without
missing anything fundamental.

2.4.4 Matrix representation

In this section, we will see how to represent a system of difference equations in matrix form. This
representation is useful for analyzing the system’s behavior, especially when the system has multiple
stocks.

Let’s consider a general model with two stock variables,

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑦𝑡, (2.5)
𝑦𝑡+1 = 𝑑𝑦𝑡 + 𝑐𝑥𝑡. (2.6)

We can rewrite these equations with a matrix multiplication,

(𝑥𝑡+1
𝑦𝑡+1

) = (𝑎 𝑏
𝑐 𝑑) (𝑥𝑡

𝑦𝑡
)

This idea generalizes to any number of stock variables. Consider a system with 𝑛 stocks, denoted
by 𝑥1, 𝑥2, …, 𝑥𝑛 and influence coefficients 𝑎𝑖𝑗, for 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, denoting the influence stock 𝑥2

𝑡
at time 𝑡 has on the stock 𝑥1

𝑡+1 at time 𝑡 + 1. We can convert this logic into the following system of
update equations,

𝑥1
𝑡+1 = 𝑎11𝑥1

𝑡 + 𝑎12𝑥2
𝑡 + ⋯ + 𝑎1𝑛𝑥𝑛

𝑡 (2.7)
𝑥2

𝑡+1 = 𝑎21𝑥1
𝑡 + 𝑎22𝑥2

𝑡 + ⋯ + 𝑎2𝑛𝑥𝑛
𝑡 (2.8)

⋮ = ⋮ ⋯ ⋮ (2.9)
𝑥𝑛

𝑡+1 = 𝑎𝑛1𝑥1
𝑡 + 𝑎𝑛2𝑥2

𝑡 + ⋯ + 𝑎𝑛𝑛𝑥𝑛
𝑡 . (2.10)

Equivalently, we can summarize all stocks 𝑥1, 𝑥2, …, 𝑥𝑛 into a vector x and all influence coefficients
into a matrix A, with

x =
⎛⎜⎜⎜⎜
⎝

𝑥1

𝑥2

⋮
𝑥𝑛

⎞⎟⎟⎟⎟
⎠

, A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎞⎟⎟⎟⎟
⎠

.

Doing so simplifies the form of the update equation to
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x𝑡+1 = Ax𝑡.

Some definitions.

We call the number of state variables needed to specify the system’s state uniquely the degrees of
freedom.

A phase space of a dynamic system is the theoretical space where every state of the system is mapped
to a unique spatial location.

Thus, the degrees of freedom of a dynamic system equals the dimensionality of its phase space.

2.5 Long-term behavior and stability analysis

Playing with a computer model is fun, but the range of possibilities becomes enormous too quickly.

In this section, we will obtain a so-called closed-form solution for the time evolution of our systems.
This means we write down an equation that gives us the system state for each point in time without
the need to iterate the difference equation forward. This is particularly useful if we want to understand
the very long-term behavior of systems, as this would require many simulation steps. These steps
are crucial to understanding what it means for a system state to be stable.

2.5.1 Closed-form solution for 1D systems

For one-dimensional systems, we can write

𝑥𝑡+1 = 𝑎𝑥𝑡

This means the system state at time 𝑡 = 1 is 𝑥1 = 𝑎𝑥0. At time 𝑡 = 2, the system state is 𝑥2 = 𝑎𝑥1 =
𝑎𝑎𝑥0 = 𝑎2𝑥0. Thus, generalizing this pattern yields the system state at time 𝑡 to be

𝑥𝑡 = 𝑥0𝑎𝑡

This means, we can directly calculate the system state at any point in time without the need to iterate
the difference equation forward.

For example, let’s say we want to calculate only each 10th time step,

t = np.arange(0, 101, 10)
t

array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

The system state is,

x_0 = 1.2; r = 0.05
x_0 * (1 + r)**t
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array([ 1.2 , 1.95467355, 3.18395725, 5.18633085,
8.44798645, 13.76087974, 22.41502307, 36.51171064,
59.47372928, 96.87643806, 157.80150942])

Here, we made use of the element-wise exponentiation of NumPy arrays. This means that each
element of the array is raised to the power of the corresponding element of the other array. This a
very convenient feature of NumPy, as it allows us to perform operations on arrays without the need
for explicit loops.

To check, whether our closed-form solution works, we compare it to the simulation results.

def compare_solutions(initial_value=1.2, nr_timesteps=100, rate=0.05):
plot_stock_evolution(initial_value=initial_value, nr_timesteps=nr_timesteps,

update_func=update_stock, rate=rate)
t = np.arange(0, nr_timesteps+1, 5);
plt.plot(t, initial_value*(1+rate)**t, 'X', color='red', label='Analytical
solution');↪

plt.legend()

compare_solutions()

Try it out with different parameter values and observe that the closed-form solution
matches the simulation results perfectly.

2.5.2 Cobweb plots

Cobweb plots are a graphical tool to understand the dynamics of one-dimensional systems.

The idea is to plot the system state at time 𝑡 + 1 against the system state at time 𝑡. Including the
system’s udpate function 𝐹(𝑥𝑡), together with the identity line, 𝑦 = 𝑥, allows us to see how the system
evolves over time. The next system state is obtained by a vertical line from the current state to the
system update function. From this point, a horizontal line to the identity line makes the next system
state, the current system state. Thus, the system evolution is represented by horizontal and vertical
lines, hence the name, because the resulting picture resembles a cobweb.
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def cobweb(update_func, initial_value, nr_timesteps=10, ax=None, **update_params):
x=initial_value; h=[x]; v=[x]; # lists for (h)orizontal and (v)ertical points
for _ in range(nr_timesteps): # iterate the dynamical system

x_ = update_func(x, **update_params) # get the next system's state
h.append(x); v.append(x_) # going vertically (changing v)
h.append(x_); v.append(x_) # going horizontially (changing h)
x = x_ # the new system state becomes the current state

fix, ax = plt.subplots(1,1) if ax is None else None, ax # get ax
ax.plot(h, v, 'k-', alpha=0.5) # plot on ax
if np.allclose(h[-2],h[-1]) and np.allclose(v[-1],v[-2]):

# if last points are close, assume convergence
ax.plot([h[-1]], [v[-1]], 'o', color='k', alpha=0.7) # plot dot

return h, v

We study the simple system 𝑥𝑡+1 = 𝑎𝑥𝑡.

def Flin(x, a): return a*x
def plotF(a, x0=1.4):

fix, ax = plt.subplots(1,2, figsize=(12, 3.5)); # axes and limits
ax[0].set_xlim(-1,2); ax[0].set_ylim(-1,2), ax[1].set_ylim(-1,2)

xs = np.linspace(-1, 2, 101); # plot F(x) and x
ax[0].plot(xs, Flin(xs, a), label="F(x)"); ax[0].plot(xs, xs, label="x")
ax[0].legend(); ax[0].set_xlabel('system state x'); ax[0].set_ylabel('system
state x')↪

h,v = cobweb(update_func=Flin, initial_value=x0, a=a, nr_timesteps=20,
ax=ax[0]); # include cobweb↪

plot_stock_evolution(initial_value=x0, nr_timesteps=20, update_func=Flin, a=a);
plt.xlabel("Time steps"); plt.tight_layout() # make axis fit nicely

For example, with 𝑎 = 0.8, we observe the cobweb plot in Figure 2.19.

plotF(a=0.8)

Figure 2.19
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Convince yourself about the following observations:

• 1 < 𝑎 : Divergences to infinity
• 𝑎 = 1: Conserved behavior
• 0 < 𝑎 < 1: Convergence to fixed point
• −1 < 𝑎 < 0: Convergence to fixed point with transient oscillatory behavior
• 𝑎 = −1: Conserved oscillatory behavior
• 𝑎 < −1: Divergend ossiliaroty behavior

We can summarize these observations into three qualitatively distinct cases for the asymptotic
behavior of linear systems.

1) |𝑎| < 1: The system converges to fixed point
2) |𝑎| > 1: The system diverges to infinity
3) |𝑎| = 1: The system is conserved

How do these observations generalize to multi-dimensional systems?

2.5.3 Multi-dimensional phase space vizualization

Let us first create a general, multi-dimensional update function.

def update_general_model(x, A): return A@x

Here, the @ operator is used for matrix multiplication.

Then, we create a plot_flow function, using the matplotlib.quiver function.

def plot_flow(A, extent=10, nr_points=11, ax=None):
if ax is None: _, ax = plt.subplots(1,1, figsize=(6,6))

x = y = np.linspace(-extent, extent, nr_points) # the x and y grid points
X, Y = np.meshgrid(x, y) # transformed into a meshgrid

dX = np.ones_like(X); dY = np.ones_like(Y) # containers for the changes
for i in range(len(x)): # looping through the x grid points

for j in range(len(y)): # looping through the y grid points
s = np.array([x[i], y[j]]) # the current state
s_ = update_general_model(s, A) # the next state
ds = s_ - s # the change in state
dX[j,i] = ds[0] # capturing the change along the x-dimension
dY[j,i] = ds[1] # captuaring the change along the y-dimension

q = ax.quiver(X, Y, dX, dY, angles='xy') # plot the result
ax.set_xlabel('x-stock level'); ax.set_ylabel('y-stock level')

Let’s test our plot_flow function with a random two-by-two matrix.

A = np.random.randn(2,2)
plot_flow(A)
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Now, we can visualize the flow of any two-dimensional system, including a trajectory, in the phase
space.

We create a plot_flow_trajectory function, which plots the flow of a system with a given matrix,
and the trajectory of the system over time.

def plot_flow_trajectory(a=1,b=0.05,c=-0.05,d=1, nr_timesteps=200):
fix, ax = plt.subplots(1,2, figsize=(12, 4)); # axes and limits
# ax[0].set_xlim(-1,2); ax[0].set_ylim(-1,2), ax[1].set_ylim(-1,2)

A = np.array([[a, b], [c, d]])
ts = iterate_model(nr_timesteps, [3, 2], update_general_model, A=A)

plot_flow(A, ax=ax[0])
ax[0].plot(ts[:,0], ts[:,1], '.-', label='Model trajectory', color='purple')
ax[0].set_xlim(-10, 10); ax[0].set_ylim(-10, 10);

ax[1].plot(ts[:,0], '.-', label='x-stock level', color='red')
ax[1].plot(ts[:,1], '.-', label='y-stock level', color='blue')
ax[1].legend()
return ts

plot_flow_trajectory();
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Such a phase space visulaization is a powerful tool, connecting the time-evolution of a dynamic systems
with a geometrical representation.

It allows us to understand the long-term behavior of a system, and eventually, how a system’s fate
depends on its initial state.

2.5.4 Closed-form solutions of multi-dimensional systems

Similarly to one-dimensional systems with direct feedback only, a closed-form solution to the time
evolution of multi-dimensional systems with delays, x𝑡+1 = Ax𝑡, has the form,

x𝑘 = A𝑘x0

to calculate the system state at time 𝑘 and study how the system behaves when 𝑘 → ∞. The only
problem is how to calculate the exponential of a matrix, A𝑡.

To study the long-term behavior of multi-dimensional systems with delays, we turn the equation x𝑘 =
A𝑘x0 into a more manageable form. For this purpose, we utilize the eigenvalues and eigenvectors
of matrix A. To recap, eigenvalues 𝜆𝑖 and eigenvectors v𝑖 of A are the scalars and vectors satisfying,

Av𝑖 = 𝜆𝑖v𝑖.

Thus, when applying an eigenvector to its matrix effectively turns the matrix into a scalar number
(the corresponding eigenvalue). Raising a scalar number to a power is easy. If we repeatedly apply
this technique, we get

A𝑘v𝑖 = A𝑘−1𝜆𝑖v𝑖 = A𝑘−2𝜆2
𝑖 v𝑖 = ⋯ = 𝜆𝑘

𝑖 v𝑖.

Decomposable components. Last, we need to represent the initial system state x0 using the
eigenvectors of matrix A as the basis vectors, i.e.,

x0 = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛,

where 𝑛 is the dimension of the state space and the coefficients 𝑐1, 𝑐2, … , 𝑐𝑛 represent the vector x0 in
the eigenvector basis of the 𝑛 × 𝑛 matrix A.
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In practice, most 𝑛 × 𝑛 matrices are diagonalizable2 and thus have 𝑛 linearly independent eigenvec-
tors. Therefore, we assume we can use them as the basis vectors to represent any initial state x0.
Representing x0 in the eigenbasis of A gives us

x𝑘 = A𝑘x0 (2.11)
= A𝑘(𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛) (2.12)
= 𝑐1A𝑘v1 + 𝑐2A𝑘v2 + ⋯ + 𝑐𝑛A𝑘v𝑛 (2.13)
= 𝑐1𝜆𝑘

1v1 + 𝑐2𝜆𝑘
2v2 + ⋯ + 𝑐𝑛𝜆𝑘

𝑛v𝑛 (2.14)
(2.15)

Now, we can clearly see that the system’s time evolution, x𝑡, is described by a summation of multiple
exponential terms of 𝜆𝑖.

Dynamics of a linear system are decomposable into multiple independent one-dimensional
exponential dynamics, each of which takes place along the direction given by an eigenvector.
A general trajectory from an arbitrary initial condition can be obtained by a simple linear
superposition of those independent dynamics.

An eigenvalue tells us whether a particular component of a system’s state (given by its corresponding
eigenvector) grows or shrinks over time. * When the eigenvalue is greater than 1, the component
grows exponentially. * When the eigenvalue is less than 1, the component shrinks exponentially. *
When the eigenvalue is equal to 1, the component is conserved.

Dominant components and systems stability. In the long term, the exponential term with
the largest absolute eigenvalue |𝜆𝑖| will eventually dominate the others. Suppose 𝜆1 has the largest
absolute value (|𝜆1| > |𝜆2|, … , |𝜆𝑛|), and we factor our 𝜆1 from the closed-form solution for x𝑡,

x𝑡 = 𝜆𝑡
1 (𝑐1v1 + 𝑐2

𝜆𝑡
2

𝜆𝑡
1
v2 + ⋯ + 𝑐𝑛

𝜆𝑡
𝑛

𝜆𝑡
1

v𝑛) .

We can see that, eventually, the first term will dominate,

lim
𝑡→∞

x𝑡 ≈ 𝜆𝑡
1𝑐1v1.

The eigenvalue with the largest absolute value is known as the dominant eigenvalue, while its
related eigenvector is termed the dominant eigenvector. This eigenvector determines the asymptotic
direction of the system’s state. This means if a linear difference equation (x𝑡+1 = Ax𝑡)’s coefficient
matrix, A, has a single dominant eigenvalue, its system state will eventually align with the direction
of its corresponding eigenvector, no matter the initial state.

• If the absolute value of the dominant eigenvalue is greater than 1, then the system will diverge
to infinity, i.e., the system is unstable.

• If less than 1, the system will eventually shrink to zero, i.e., the system is stable.
• If it is precisely 1, then the dominant eigenvector component of the system’s state will be

conserved with neither divergence nor convergence, and thus the system may converge to a
non-zero equilibrium point.

2This assumption doesn’t apply to defective (non-diagonalizable) matrices that don’t have 𝑛 linearly independent
eigenvectors. However, such cases are rare in real-world applications because any arbitrarily small perturbations
added to a defective matrix would make it diagonalizable. Problems with such sensitive, ill-behaving properties are
sometimes called pathological in mathematical modeling.
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Oscillating behavior. Where does oscillating behavior come from?

In short, when some eigenvalues of a coefficient matrix are complex numbers. Why? The answer lies
in Euler’s Formula, which states that for any real number 𝑥,

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥),

bridging the world of trigonometric functions (i.e., oscillations) with exponential functions (i.e., the
closed-form solutions of linear difference equations). Thus, when some eigenvalues of a coefficient
matrix are complex numbers, the resulting system’s behavior is rotations around the origin of the
system’s phase space.

The meaning of the absolute values of those complex eigenvalues is still the same as before:

• if the eigenvalue’s absolute value is larger than one, |𝜆| > 1, we have instability in the form
of rotations with an expanding amplitude;

• if the eigenvalue’s absolute value is smaller than one, |𝜆| < 1, we have stability in the form
of rotations with a shrinking amplitude; and

• if the eigenvalue’s absolute value equals one, |𝜆| = 1, we have conservation in the form of
rotations with a sustained amplitude.

Eigenvalue spectrum.

For higher-dimensional systems, various kinds of eigenvalues can appear in a mixed way; some of them
may show exponential growth, some may show exponential decay, and some others may show rotation.
This means that all of those behaviors are going on simultaneously and independently in the system.
A list of all the eigenvalues is called the eigenvalue spectrum of the system (or just spectrum for
short). The eigenvalue spectrum carries a lot of valuable information about the system’s behavior, but
often, the most important information is whether the system is stable or not, which can be obtained
from the dominant eigenvalue.

How to put this into practice/Python?

We use scipy.linalg.eig to calculate the eigenvalues and eigenvectors of a matrix.

From the documentation (scipy.linalg.eig?) we note that it return two objects, an iterable of
eigenvalues w and an iterable of eigenvalues v. The normalized eigenvector corresponding to the
eigenvalue w[i] is the column v[:,i].

evals, evecs = scipy.linalg.eig(A)

For example, the eigenvalues are

evals

array([ 0.90140379+0.j, -1.1914619 +0.j])

The eigenvectors are

evecs

array([[ 0.99099361, 0.60104809],
[-0.13390914, 0.79921285]])
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For readbility, we store eigenvalues and eigenvectors in new variables.

eval1, eval2 = evals
print(eval1)
print(eval2)

(0.9014037889457369+0j)
(-1.1914619046393624+0j)

Since the eigenvectors are return in the format in which they are return we need to transpose them
to assign them to two separate variables.

evec1, evec2 = evecs.T
# We check that we did not make any mistake:
print("This should be zeros:", evec1 - evecs[:,0])
print("This too:", evec2 - evecs[:,1])

This should be zeros: [0. 0.]
This too: [0. 0.]

We can autmate such checks with the assert statement.

assert np.allclose(evec1, evecs[:,0]), "The first eigenvector is not correct"
assert np.allclose(evec2, evecs[:,1]), "The second eigenvector is not correct"

Now, we create a plot_eigenvectors function.

def plot_eigenvectors(a,b,c,d, extent=10, ax=None):
if ax is None: _, ax = plt.subplots(1,1, figsize=(6,6))

A = np.array([[a, b], [c, d]])
evals, evecs = scipy.linalg.eig(A)
eval1, eval2 = evals
evec1, evec2 = evecs.T

# plotting the real part of the eigenvectors
ax.plot([0, extent*evec1[0].real], [0, extent*evec1[1].real], '-',

lw=2, color='deepskyblue',
label='$|\lambda_1|$ = {}'.format(np.abs(eval1).round(4)))

ax.plot([0, extent*evec2[0].real], [0, extent*evec2[1].real], '-',
lw=2, color='teal',
label='$|\lambda_2|$ = {}'.format(np.abs(eval2).round(4)))

ax.legend(loc='upper right', bbox_to_anchor=(-0.15, 1))

plot_eigenvectors(a=1, b=1, c=1.0, d=0)
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Putting it all togehter, we observe how the eigenvector represent the long-term behavior of the system
(Figure 2.20).

plot_flow_trajectory_with_ev()

Figure 2.20

2.5.5 Summary | Systems with linear changes
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𝑘 th-component is …

if 𝜆𝑘 is
complex-conjugate, the

𝑘th-component is
rotating around the

origin if 𝜆𝑘 is dominant
‖𝜆𝑘‖ > 1 growing with an expanding

amplitude.
system unstable,

diverging to infinity
‖𝜆𝑘‖ < 1 shrinking with a shrinking

amplitude.
system stable,

converging to the
origin.

‖𝜆𝑘‖ = 1 conserved with a sustained
amplitude.

system stable,
dominant eigenvector

component
conserved,system may
converge to a non-zero

equilibrium point

Linear dynamical systems can show only exponaential growth/decay, periodic oscillation,
stationary states (no change), or their hybrids (e.g., exponentially growing oscillation) .

Sometimes they can also show behaviors that are represented by polynomials (or products of polyno-
mials and exponentials) of time. This occurs when their coefficient matrices are non-diagonalizable.
(Sayama, 2023)

In other words, these behaviors are signatures of linear systems. If you observe such behavior in nature,
you may be able to assume that the underlying rules that produced the behavior could be linear.

2.6 Non-linear changes

Systems with non-linear changes, often called just non-linear systems, are defined as systems who are
not linear (x𝑡+1 = Ax𝑡). In other words, they are systems whose rules involve non-linear combinations
of state variables.

While linear systems exhibit relatively simple behavior (exponential growth/decay, periodic
oscillation, stationary states (no change), or their hybrids (e.g., exponentially growing oscillation)),
non-linear systems can exhibit a much wider range of behaviors, including chaotic dynamics,
bifurcations, and limit cycles. As a result, there is no general way to obtain a closed-form solution for
non-linear systems, making them much more challenging to analyze and predict than linear systems.

The logisitc map is a classic example of a one-dimensional nonlinear system. It is defined as

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑥𝑡(1 − 𝑥𝑡
𝐶 ),

where 𝑟 is the growth rate and 𝐶 the carrying capacity. In Python, it can be implemented as follows:

def logistic_map(x, r, C=1): return x + r*x*(1-x/C)

Plotting the logistic map for a growth rate of 0.25, and a carrying capacity of 3.0, results in the
following time evolution:
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plot_stock_evolution(50, 0.01, update_func=logistic_map, r=0.25, C=3.0);

2.6.1 Finding equilibrium points

An equilibirum point 𝑥𝑒 (also called fixed points or steady states) is a point in the state space, where
the system can stay unchanged over time.

𝑥𝑒 = 𝐹(𝑥𝑒)

In other words, if the system state is at an equilibrium point, it will remain there indefinitely. Fixed
points are theoretically important as a meaningful reference when we understand the structure of
the phase space. They are of practical relevance when we want to sustain the system at a certain
desirable state.

To find the equilibrium points of a system, we need to solve the equation 𝑥𝑒 = 𝐹(𝑥𝑒) for 𝑥𝑒. This can
be done by setting 𝑥𝑡+1 = 𝑥𝑡 = 𝑥𝑒 in the system’s update function and solving for 𝑥𝑒.

For example, in the logistic map, we obtain,

𝑥𝑒 = 𝑥𝑒 + 𝑟𝑥𝑒(1 − 𝑥𝑒
𝐶 ) (2.16)

0 = 0 + 𝑟𝑥𝑒(1 − 𝑥𝑒
𝐶 ) (2.17)

0 = 𝑟𝑥𝑒(1 − 𝑥𝑒
𝐶 ) (2.18)

This equation is fulfilled if either 𝑥𝑒 = 0 or 𝑥𝑒 = 𝐶. Thus, the logistic map has two equilibrium points,
𝑥𝑒 = 0 and 𝑥𝑒 = 𝐶.

Graphically, fixpoints of an iterative map are the intersections between 𝐹(𝑥) and 𝑥.

xs = np.linspace(-1, 6, 101) # Resolution of the x axis
plt.plot(xs, logistic_map(xs, 1.5, 5), label="F(x)") # Plot the map x_=F(x)
plt.plot(xs, xs, label="x") # Plot the diagonal x_=x
plt.legend(); # Include the legend
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We can enrich this representation with the cobweb plot, which shows the system’s time evolution from
an initial state to the equilibrium point.

xs = np.linspace(-1, 6, 101)
plt.plot(xs, logistic_map(xs, 1.5, 5), label="F(x)")
h,v = cobweb(logistic_map, initial_value=0.1, r=1.5, C=5,

nr_timesteps=100, ax=plt.gca());
plt.plot(xs, xs, label="x")
plt.legend();

2.6.2 Linear stability in nonlinear systems

Unfortunately, it is impossible to forcast the asymptotic behaviors of nonlinear systems in the same
way as for linerar systems.

However, the concept of stability in linear systems can be applied to equilibirum points of non-linear
systems. > The basic idea of linear stability analysis is to rewrite the dynamics of the system in terms
of a small perturbation added to the equilibrium point of your interest.

Consider the system 𝑥𝑡+1 = 𝐹(𝑥𝑡) with steady state 𝑥𝑒.

To analyze its stability around this equilibrium point, we switch our perspective from a global coordi-
nate system to a local one. We zoom in and capture a small perturbation added to the equilibrium
point, 𝑧𝑡 = 𝑥𝑡 − 𝑥𝑒. Inserting 𝑥𝑡 into the update equation, yields

𝑥𝑒 + 𝑧𝑡 = 𝐹(𝑥𝑒 + 𝑧𝑡−1).
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Since 𝑧 is small (by assumption), we can approximate the right-hand side as a Taylor expansion,

𝑥𝑒 + 𝑧𝑡 = 𝐹(𝑥𝑒) + 𝐹 ′(𝑥𝑒)𝑧𝑡−1 + 𝑂(𝑧2
𝑡−1)

where, 𝐹 ′ is the derivative of 𝐹 with respect to 𝑥.
Using 𝑥𝑒 = 𝐹(𝑥𝑒), we obtain the simple linear difference equation,

𝑧𝑡 ≈ 𝐹 ′(𝑥𝑒)𝑧𝑡−1.

To determine the stability of fixed points in non-linear systems, we need to look at the
derivative of 𝐹(𝑥𝑒) at the fixed point.

There are three qualitatively distinct cases for the linear stability of a steady state in a non-linear
system.

1) |𝐹 ′(𝑥𝑒)| < 1: The equilibirum point 𝑥𝑒 is stable.
2) |𝐹 ′(𝑥𝑒)| > 1: The equilibirum point 𝑥𝑒 is unstable.
3) |𝐹 ′(𝑥𝑒)| = 1: The equilibirum point 𝑥𝑒 is neutral 3

For example, for the logistic map,

𝑥𝑡+1 = 𝐹(𝑥𝑡) = 𝑥𝑡 + 𝑟𝑥𝑡(1 − 𝑥𝑡
𝐶 )

we calculate the derivative of 𝐹(𝑥𝑡) as

𝐹 ′(𝑥) = 1 + 𝑟 − 2𝑟 𝑥
𝐶 .

At the fixed points 𝑥𝑒 = 0 and 𝑥𝑒 = 𝐶, we have

𝐹 ′(𝑥)|𝑥=0 = 1 + 𝑟, and 𝐹 ′(𝑥)|𝑥=𝐶 = 1 − 𝑟.

Graphically, we obtain Figure 2.21.

plot()

Figure 2.21: Linear stability shown at the nonlinear logistic map.
3also know as Lyapunov stable. More advanced nonlinear analysis is required to show that an equilibrium point is truly

neutral.
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We observe, that when 0 < 𝑟 < 2, the system convergens to 𝑥𝑒 = 𝐶. When 𝑟 > 2, the system
converges to 𝑥𝑒 = 0. When 𝑟 > 2, 𝐹 ′(𝑥)|𝑥=𝐶 = 1 − 𝑟 < −1 causing unstable ossilations.

2.7 Learning goals revisited

• Define and describe the components of a dynamic system.

– At their core, dynamic systems consist of stocks and flows.

• Represent dynamic system models in visual and mathematical form.

– In general, a dynamic system iterates via x𝑡+1 = 𝐹(x𝑡).
• Explain the concepts of feedback loops and delays.

– Reinforcing (positive) feedback loops lead to divergence/instability.
– Balancing (negative) feedback loops lead to convergence/stability.
– Considering delays makes system more complicated.

• Explain two kinds of non-linearity and how they are related.

– Dynamic systems with linear changes can be represented as x𝑡+1 = Ax𝑡, and can exhibit
non-linear behavior, such as exponential growth or decay, periodic osscilations, or stationary
states, or their combinations.

– Dynamic systems with non-linear changes can exhibit more kinds of behaviors.

• Implement dynamic system models and visualize model outputs using Python, to interpret
model results.

• Analyze the stability of equilibrium points in dynamic systems using linear stability analysis.

2.7.1 Bibliographical and Historical Remarks

Raworth (2017) (Chapter 4) and Page (2018) (Chapter 18) provide great conceptual introductions to
the topic without going into mathematical details.

Sayama (2023) heavily inspired some of the material in this chapter.
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3 Tipping elements

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

3.1 Motivation

Think of the term “tipping point” in the context of sustainability. What do you associated with
it? What does it mean? What are examples of tipping points in the context of human-environment
interactions?

Figure 3.1: Tipping points, elements and regime shifts

Tipping points, elements and regime shifts The concepts of tipping elements and regime shifts
are closely related aspects of complex systems dynamics. While tipping elements refer more to the
components of a system with the potential for abrupt change, regime shifts refer more to the actual
transitions that occur when these elements cross their critical thresholds. Also, the term tipping
elements is used more in the context of Earth system science, while regime shifts are used more in the
context of social-ecological systems.
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Figure 3.2: Climate tipping risks

Climate tipping risks Climate tipping points are thresholds in the Earth’s climate system that,
such as a slight increase in global average temperature, when crossed, can lead to significant and
potentially irreversible changes. These changes can trigger reinforcing feedback loops that push
the system into a new equilibrium, potentially leading to severe consequences like accelerated ice
melt or shifts in ocean currents. For instance, the collapse of the West Antarctic ice shelves is a
potential climate tipping point that could lead to substantial sea level rise and other impacts. While
some tipping points may be triggered within the 1.5-2°C Paris Agreement range, many more
become likely at 2-3°C of warming (Armstrong McKay et al., 2022).

Figure 3.3: Parts of the earth system with tipping points
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Global Tipping Points While climate tipping points are specific to the Earth’s climate systems
and their feedback mechanisms, global tipping points (Lenton et al., 2023) consider a wider array
of interconnected systems, including human and ecological dimensions, highlighting the
complex interplay between natural and societal changes. Natural tipping points may occur over
the entire Earth system, from the Biosphere to the Cryosphere, the Oceans and the Atmosphere.

Currently, several major tipping points are at imminent risk due to global warming, with more pro-
jected as temperatures rise above 1.5°C. The cascading effects of these negative tipping points could
overwhelm global social and economic systems, outpacing some countries’ adaptive capacities. Ad-
dressing these crises requires a transformative shift away from incremental changes towards a ro-
bust global governance framework that prioritizes rapid emission reductions and ecological
restoration.

Social tipping points to the rescue?

Figure 3.4: Social tipping points

Simultaneously, it’s crucial to identify and harness positive tipping points, where beneficial changes
can become self-sustaining, potentially offsetting some negative impacts. There is an urgent need to
build resilient societies capable of withstanding impending challenges and seizing opportunities for
sustainable progress. The paradigm of ‘business as usual’ is obsolete; instead, a proactive approach
to governance and global cooperation is essential to navigate towards a sustainable future, leveraging
both the threats and opportunities posed by tipping points (Lenton et al., 2023).

Challenges So what exacltly are tipping elements and regime shifts?

How can we identify them?

And how can we manage them?

Here, the mathematics of bifurcations can help.
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3.1.1 Learning goals

After this chapter, students will be able to:

• Explain the concept of a bifurcaton and how it relates to tipping points and regime shifts.
• Explain a simple dynamic system to model a tipping element or regime shift.
• Explain what an attractor, transient, basin of attraction and separatrix are.
• Conduct a bifurcation analysis in a simple dynamic system using Python.
• Construct a potential function and explain its role in bifurcation analysis.
• Explain and recognize hysteresis and its consequences for sustainability transitions.

3.2 Bifurcations | The mathematics of tipping elements

The key question bifurcation theory addresses is: How does the system’s long-term behavior
depend on its parameters?

The distinction between a system’s state and its parameters is crucial. The state of a system is the
set of variables that describe the system at a given time, while the parameters are the constants that
define the system’s behavior.

Often, a small change in parameter values causes only a small or even no quantitative change in the
system’s state. However, sometimes, a slight change in parameter values causes a drastic, qualitative
change in the system’s behavior.

A bifurcation is a qualitative, topological change of a dynamic system’s phase space that
occurs when some parameters are slightly varied across their critical thresholds.

Here, we cover the very basics of bifurcation theory in dynamic systems. These provide a rich under-
standing of tipping points and regime shifts in the sustainability sciences.

We start by importing the necessary libraries and setting up the plotting environment.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

We also inlcude some keys functions to simulate dynamic systems from 02.01-Nonlinearity.

To run the model we copy and refine an iterate_model function.

def iterate_model(nr_timesteps, initial_value, update_func, **update_params):
stock = initial_value
time_series = [stock]
for t in range(nr_timesteps):

stock = update_func(stock, **update_params)
if np.abs(stock)>10e9: break # stop the simulation when x becomes too large
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time_series.append(stock)
return np.array(time_series)

We also copy define a plot_stock_evolution function, plotting the stock evolution.

def plot_stock_evolution(nr_timesteps, initial_value, update_func,
**update_parameters):

time_series = iterate_model(nr_timesteps, initial_value,
update_func, **update_parameters)

plt.plot(time_series, '.-', label=str(update_parameters)[1:-1]);
plt.xlabel("Time steps"); plt.ylabel("System state");
return time_series

And last, we copy the cobweb plot function over.

def cobweb(F, x0, params, iters=10, ax=None):
h=[x0]; v=[x0]; x=x0 # lists for (h)orizontal and (v)ertical points
for _ in range(iters): # iterate the dynamical system

x_ = F(x, **params) # get the next system's state
if np.abs(x)>10e9: break # stop the simulation when x becomes too large
h.append(x); v.append(x_) # going vertically (changing v)
h.append(x_); v.append(x_) # going horizontially (changing h)
x = x_ # the new system state becomes the current state

fix, ax = plt.subplots(1,1) if ax is None else None, ax # get ax
ax.plot(h, v, 'k-', alpha=0.5) # plot on axv
if np.allclose(h[-2],h[-1]) and np.allclose(v[-1],v[-2]):

# if last points are close, assume convergence
ax.plot([h[-1]], [v[-1]], 'o', alpha=0.7) # plot dot

return h, v

3.2.1 A minimal model of tipping elements

Let 𝑥 denote the property of a system we are interested in, such as the amount of ice in the
Arctic, the population of a species, or the fraction of a lake’s surface coverd by vegetation (Scheffer et
al., 2001). Thus, we describe the system’s state over time 𝑡 by 𝑥𝑡.

Conceptually, the system’s dynamics are influenced by a reinforcing feedback loop, a balancing
feedback loop, an external influence 𝑐. The exertnal influence 𝑐, for example, represents the global
mean temperature in the case of climate tipping elements, or the level of nutrients in the example of
a lake regime shift.
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Figure 3.5: Tipping element model

A simple mathematical representation of such a system has the difference euqation,

Δ𝑥 = (𝑥 − 𝑎𝑥3 + 𝑐)1
𝜏 ,

where 𝜏 represents the typical time scale of the system, and thus, inverse strength of the system’s
change, and 𝑎 is a parameter that determines the strength of the balancing feedback loop in relation
to the reinforcing feedback loop (with unit stength).

We define the update_stock function, 𝐹(𝑥𝑡 for the udpate 𝑥𝑡+1 = 𝐹(𝑥𝑡), to iterate the stock 𝑥
according to the difference equation above.

def F_tipmod(x, c, a=1, tau=10): return x + (x - a*x**3 + c)/tau

We explore the stock’s evolution over time from two different initial conditions by iterating the model
for 200 time steps.

def compare_initial_conditions(nr_timesteps=200, c=0.0, tau=50, a=1):
plot_stock_evolution(nr_timesteps, 1.2, F_tipmod, c=c, tau=tau, a=a);
plot_stock_evolution(nr_timesteps, -1.2, F_tipmod, c=c, tau=tau, a=a);
paramstring = f"c={c}, tau={tau}, a={a}"
plt.gca().annotate(paramstring, xy=(0, 1.0), xycoords='axes fraction',
va='bottom', ha='left'); plt.show()↪

compare_initial_conditions()
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We observe bi-stability. Depending on where the dynamical system starts, it will either converge
to the fixed point 𝑥𝑒 = 1.0, or the the fixed point 𝑥𝑒 = −1.0
How do the parameters influence the system’s evolution? We can convince ourselves that the timescale
parameter 𝜏 determines the speed of the system’s evolution (vary 𝜏 and the total number of simulation
staps proportionally: the curves’s shapes look identical). The parameter 𝑎 scales the system’s fixed
points (vary 𝑎 and observe the system’s behavior). Finally, We can also observe, that the external
influence 𝑐 can change the system’s equilibrium state. Run this notebook interactivly and confirm
these observations for yourself!

3.2.2 Cobweb plot

Let us observe thhis phenomenon of bi-stability in a cobweb plot.

def cobweb_plot(c=0, tau=1.5, a=1):
xs = np.linspace(-2,2,101); plt.xlabel('x'); plt.ylim(-1.3,1.3);
plt.xlim(-1.6,1.6);↪

plt.plot(xs, F_tipmod(xs, c,a,tau), label='F(x)');
plt.plot(xs, xs, label='x', color='k', alpha=0.5); plt.legend();
cobweb(F_tipmod, x0=0.3, params=dict(c=c, a=a, tau=tau), iters=100,
ax=plt.gca());↪

cobweb(F_tipmod, x0=-0.3, params=dict(c=c, a=a, tau=tau), iters=100,
ax=plt.gca());↪

cobweb_plot()

We see, that it depends on where the update function 𝐹(𝑥𝑡) intersects the diagonal line 𝑦 = 𝑥 whether
an inital condition converges to the fixed point 𝑥𝑒 = 1.0 or 𝑥𝑒 = −1.0. The external influence
parameter 𝑐 determines this intersection point

Some definitions.

An attractor is a set of states toward which a dynamic system tends to evolve over time. These states
represent the system’s long-term behavior. Once the system reaches an attractor, it typically remains
there. For example, in the system above the attractors are the fixed points 𝑥𝑒 = 1.0 and 𝑥𝑒 = −1.0.
A transient refers to the behavior of a system during a limited period of time before it reaches an
attractor. For example, the cobweb plot shows the transient behavior of the system.
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A basin of attraction the set of all the initial states from which you will eventually end up falling
into that attractor. For example, in the system above, the basin of attraction for the fixed point
𝑥𝑒 = 1.0 are all point greater than the intersection point between 𝐹(𝑥𝑡) and 𝑦 = 𝑥. The basin of
attraction for the fixed point 𝑥𝑒 = −1.0 are all points less than the intersection point between 𝐹(𝑥𝑡)
and 𝑦 = 𝑥.
If there are more than one attractor in the phase space, you can divide the phase space into several
different regions. In this case, a separatrix is the boundary between distinct basins of attractions.
For example, in the system above, the separatrix consists only of the intersection point between 𝐹(𝑥𝑡)
and 𝑦 = 𝑥.

3.2.3 Empirical bifurcation diagram

A bifurcation diagram is a powerful tool to visualize the system’s long-term behavior as a function of
its parameters. To create a bifurcation diagram, we iterate the model for a range of parameter values
and plot the system’s equilibrium states.

def simulate_bifurcation_diagram(F, x0s, params, iters=1000, cextent=[-0.5,0.5],
pointsize=2.0):

c_s = np.linspace(cextent[0], cextent[1], 501) # The external parameter to be
varied↪

for x0 in x0s: # Loop through all initial conditions
endpoints = [] # Container to store the endpoints
for c in c_s: # Loop through all external parameter values

trj = iterate_model(iters, x0, F, c=c, **params) # Simulate the system
endpoints.append(trj[-10:]) # Taking the last 10 points of the

trajectory↪

# Plotting the endpoints
cpoints = [[c_s[i]]*l for i, l in enumerate(map(len, endpoints))] # create

cpoints that may work for different endpoint lengths↪

plt.scatter(np.hstack(cpoints), np.hstack(endpoints), c='k', alpha=0.5,
s=pointsize); # np.hstack unpacks everything

plt.ylabel(r'Equilibrium state $x$'); plt.xlabel(r'External influence $c$')

simulate_bifurcation_diagram(F_tipmod, x0s=[-1.5, 1.5], params=dict(tau=10 , a=1.0),
iters=1000)↪
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This empirical bifurcation diagram allows us to identify the system’s stable fixed points as a
function of the parameter 𝑐. We observe the range of parameter values for which the system
converges to the fixed points around 𝑥𝑒 = 1.0 and 𝑥𝑒 = −1.0, as well as the range where the system
is bi-stable. We also observe the critical values of 𝑐 where the system undergoes a qualitative
change in its behavior. When the external parameter 𝑐 changes around these critical values in 𝑐 (close
to −0.4 and 0.4 here), a tiny change causes a drastic effect on the system state.

3.2.4 Conducting a bifurcation analysis

Local bifurcations occur when the stability of an equilibrium point changes between stable and unsta-
ble.

1) Determine the equilibirum points in dependence of the model parameters
2) Determine the stability of the equilibirum points in dependence of the model parameters. For

one-dimensional systems 𝑥𝑡+1 = 𝐹(𝑥𝑡), an equilibrium point is stable when |𝐹 ′(𝑥𝑒)| < 1.
3) Bifurcations occur at parameter values at which the stability changes. For one-dimensional

systems 𝑥𝑡+1 = 𝐹(𝑥𝑡), local bifurcations occur when |𝐹 ′(𝑥𝑒)| = 1.

3.2.5 Step 1 | Equilibrium points

The equilibrium points for Δ𝑥 = 1
𝜏 (𝑥 − 𝑎𝑥3 + 𝑐) fulfill,

𝑐 = 𝑎𝑥3 − 𝑥.

It is not straightforward to solve the equation, 𝑐 = 𝑎𝑥3 − 𝑥, analytically, i.e., to give an expression for
how the system’s equilibirum depends on the parameters 𝑐 and 𝑎. However, we can plot the parameter
𝑐 as a function of the equilibirum points 𝑥𝑒 and the parameter 𝑎.

def plot_equilibirum_points_tipmod(a=1.0, cextent=[-2.0,2.0]):
xe=np.linspace(-2.0,2.0,501) # equilibrium points
c = a*xe**3 - xe # parameter c
plt.plot(c, xe, "--"); # plot
plt.xlabel(r'External parameter $c$'); plt.ylabel(r'Equilibrium points $x_e$');
# plt.xlim(cextent);

plot_equilibirum_points_tipmod()
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3.2.6 Step 2 | Stability

Computing the derivative of the update function 𝐹(𝑥𝑡) = 𝑥 + 1
𝜏 (𝑥 − 𝑎𝑥3 + 𝑐) , we find,

𝑑𝐹
𝑑𝑥 = 1 + 1

𝜏 (1 − 3𝑎𝑥2).

We create a Python function to plot the whether an equilibrium point is stable or not using the
np.logical_and function.

def plot_stability_tipmod(a=1.0, tau=3.0, cextent=[-3.0,3.0]):
xe=np.linspace(-3, 3, 1001) # equilibrium points
c = a*xe**3 - xe # parameter c

def F_(x, a,tau): return 1 + (1-3*a*x**2)/tau
cond=np.logical_and(F_(xe, a,tau)<1, F_(xe, a,tau)>-1)
plt.plot(c[cond], xe[cond], ".", c='red')

plt.xlabel(r'External parameter $c$'); plt.ylabel(r'Equilibrium points $x_e$');
plt.xlim(cextent);

Brining stability and equilibrium points together, we can plot an analytical bifurcation diagram.

a = 1.0; tau=3.0
plot_equilibirum_points_tipmod(a=a);
plot_stability_tipmod(a=a, tau=tau)

3.2.7 Step 3 | Bifurcation diagram

We enrich this bifurcation diagram by solving 𝑑𝐹
𝑑𝑥 = 1 + 1

𝜏 (1 − 3𝑎𝑥2) for 𝑑𝐹
𝑑𝑥 = 1 and 𝑑𝐹

𝑑𝑥 = −1 yields
the stability boundaries

𝑥𝑏 = ±√ 1
3𝑎 and 𝑥𝑏 = ±√2𝜏 + 1

3𝑎 .

We create a Python function to plot the stability boundaries.
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def plot_stability_boundaries_tipmod(a= 1.0, tau=3, cextent=[-3.0, 3.0]):
styl = dict(ls=":", lw=0.75, color='green')
plt.plot(cextent,[np.sqrt(1/(3*a)), np.sqrt(1/(3*a))], **styl)
plt.plot(cextent,[-np.sqrt(1/(3*a)), -np.sqrt(1/(3*a))], **styl)
plt.plot(cextent,[np.sqrt((2*tau + 1)/(3*a)), np.sqrt((2*tau + 1)/(3*a))],
**styl)↪

plt.plot(cextent,[-np.sqrt((2*tau + 1)/(3*a)), -np.sqrt((2*tau + 1)/(3*a))],
**styl)↪

Bringing all togehter, we obtain our analytical bifurcation diagram.

def plot_analytical_bifurcation_tipmod(a = 1.0, tau = 3.0, extent=3.0):
plot_equilibirum_points_tipmod(a=a, cextent=[-extent, extent]);
plot_stability_tipmod(a=a, tau=tau, cextent=[-extent, extent]);
plot_stability_boundaries_tipmod(a=a, tau=tau, cextent=[-extent, extent]);

a = 1.0; tau = 3.0
plot_analytical_bifurcation_tipmod(a = a, tau = tau, extent=1.0)

Lastly, we can compare the empirical bifurcation diagram with the analytical bifurcation diagram,
and observe that both match perfectly.

a = 1.0; tau = 3.0
plot_analytical_bifurcation_tipmod(a = a, tau = tau, extent=2.0)
simulate_bifurcation_diagram(F_tipmod, x0s=[-0.5, 0.5], params=dict(tau=tau , a=a),

iters=500, pointsize=30, cextent=[-2.0, 2.0])
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Our bifurcation analysis produces the same diagram we observed in the literature. What is still missing
is the changing stability landscape portrayed in Figure 3.6?

Figure 3.6: Conceptual Regime Shift

3.2.8 Potential function

A potential is a function that describes the energy of a system. In the context of dynamic systems,
a potential function can help us understand the system’s behavior by visualizing the system’s energy
landscape.
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Figure 3.7: Illustrations of potential functions

In general, there are multiple ways to define a potential function. Here, we define a potential function
𝐺 as the negative integral of the system change Δ𝑥. Thus, for a system 𝑥𝑡+1 = 𝐹(𝑥𝑡) = 𝑥𝑡 − 𝐺(𝑥)

𝑑𝑥 ∣
𝑥=𝑥𝑡

,
we have

Δ𝑥 = −𝐺(𝑥)
𝑑𝑥 .

The idea is, that the system changes as if rolling downard (according to the first derivative of) the
potential landscape 𝐺(𝑥).
Thus, for the difference equation Δ𝑥 = 1

𝜏 (𝑥 − 𝑎𝑥3 + 𝑐), we have

𝐺(𝑥) = −1
𝜏 (1

2𝑥2 − 1
4𝑎𝑥4 + 𝑐𝑥) .

Converting this into Python yields,

def G_tipmod(x, c,a,tau): return - (x**2/2 - a*x**4/4 + c*x)/tau

which we use in a plot_potential function to visualize the potential landscape.

def plot_tipmod_potential(c=0.2, a=1.0, tau=2):
xs=np.linspace(-2,2,501); plt.ylim(-0.5, 0.5);
plt.plot(xs, G_tipmod(xs, c,a,tau), color='blue')
plt.ylabel(r'Potential $G(x)$'); plt.xlabel(r'System state $x$')

# numerically find and plot equilibrium points
c_ = a*xs**3 - xs
xeq = xs[np.isclose(c_-c, 0.0, atol=0.02)]
plt.plot(xeq, G_tipmod(xeq, c, a, tau), 'o', ms=12, color='k')
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plot_tipmod_potential()

Finally, we bring all pieces together to visualize the system’s potential landscape, bifurcation diagram
and time evolution.

def plot_all_tipmod(c=0.2, a=1.0, tau=2):
fig = plt.figure(figsize=(9, 4))

fig.add_subplot(221)
plot_tipmod_potential(c=c, a=a, tau=tau)

fig.add_subplot(222)
plot_analytical_bifurcation_tipmod(a=a, tau=tau, extent=1.4)
plt.plot([c,c], [-2,2], "-", color='black')

fig.add_subplot(313)
compare_initial_conditions(nr_timesteps=50, c=c, tau=tau, a=a)

plt.tight_layout();

plot_all_tipmod();
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<Figure size 2340x750 with 0 Axes>

3.2.9 Hysteresis

The last phenomenon we want to explore is hysteresis. Hysteresis occurs when the system’s behavior
depends on its history, i.e., the system’s current state depends on its past states.

We let our tipping element model iterate until it reaches an equilibirum point and then slighlty change
the external influence parameter 𝑐.

1) We start from a low value of external influence parameter 𝑐 such that the system equilibriates
toward the negative equilibrium point and then increae 𝑐 into the range where only the positive
equilibrium point is stable.

2) Then, we decrease 𝑐 back to the range where only the negative equilibrium point is stable.

def plot_hysteresis():
x=-1; xs = [] # inital condition and container for the system state
cvs = np.linspace(-0.8, 0.8, 101); # values of parameter a to go through
cvs = np.concatenate((cvs, cvs[::-1])); # first we go up, then we go back down

for c in cvs: # looping through all parameter values
for _ in range(100): x=F_tipmod(x, c=c, a=1.0, tau=2.0); # iterating the

system 100 times↪

xs.append(x); # storing the last system state

plt.plot(cvs, xs,'-',alpha=0.5, color='gray',zorder=-1) # Plot background line
plt.scatter(cvs, xs, alpha=0.9, s=np.arange(len(cvs))[::-1]+1,
c=np.arange(len(cvs)), cmap='viridis'); # Colorful plot↪

plt.xlabel(r"Influence parameter $c$"); plt.ylabel(r"System state $x$");

plot_hysteresis()
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Time moves from large to small and dark to light dots.

Hysteresis is not only a theoretical construct. It occurs in many practical real-world domains from
physics, chemistry, engineering, biology, to economics.

Figure 3.8: Hysteresis of the Antarctic Ice Sheet

The hysteresis of the Antarctic Ice Sheet refers to the phenomenon where the ice sheet’s response to
temperature changes is not symmetric; i.e., the thresholds for ice growth and decline differ significantly
(Figure 3.8). This behavior has critical implications for understanding future sea-level rise under global
warming scenarios.

The Antarctic Ice Sheet exhibits multiple temperature thresholds, beyond which ice loss becomes
irreversible. For instance, at 2°C warming, West Antarctica faces long-term partial collapse due to
marine ice-sheet instability. A significant loss of over 70% of the ice volume is anticipated with 6 to
9°C warming, primarily driven by surface elevation feedback (Garbe et al., 2020).

3.3 Learning goals revisited

In this chapter, we have explored the concept of a bifurcation and its significance in understanding
tipping points and regime shifts. We examined how small changes in system parameters can lead
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to substantial shifts in behavior, highlighting the importance of bifurcations as precursors to critical
transitions.

We then introduced a simple dynamic system model to represent a tipping element or regime shift,
giving us a framework to analyze and simulate how systems behave under the influence of varying
forces and feedback mechanisms. In this context, we explained key concepts such as attractors,
transients, basins of attraction, and separatrices. These elements helped us understand the
structure of the system’s state space, illustrating how it is shaped by stable and unstable regions.

To deepen our analysis, we conducted a bifurcation analysis, demonstrating how a system’s behavior
changes as we adjust specific parameters. This analysis allowed us to identify potential tipping points
and provided a practical approach to studying system dynamics.

Furthermore, we constructed a potential function and examined its role in bifurcation analysis, as
it represents the energy landscape and stability of a system. By analyzing the shape and contours of
this potential function, we gained insight into where attractors are located and how the system may
transition between states.

Finally, we discussed hysteresis and its implications for sustainability transitions. We observed
that hysteresis introduces a kind of path-dependence, where returning to an original state may re-
quire more than simply reversing parameter changes. This phenomenon has critical consequences for
sustainability, underscoring the challenges in restoring systems after they have undergone significant
transformations. Together, these insights equip us with a deeper understanding of complex system
dynamics, emphasizing the importance of identifying and managing critical transitions effectively.
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4 Resilience

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

4.1 Motivation | Resilience in sustainability contexts

Think of the term “resilience” in the context of sustainability and human-environment interactions.
What does it mean to you? How can we model it? How can we measure it? What are the key
challenges and opportunities in this field?

4.1.1 Resilience everywhere

Capacity of a system to cope with shocks

from latin resiliō (“to spring back”)

Resilience is a widly used term in many different fields, from psychology to engineering, from ecology
to social-ecological systems.

Figure 4.1: https://www.mind-berry.com/wp-content/uploads/2023/06/Resilience-image.png

Psychology source: mind-berry.com | What is resilience?
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Resilience is the capacity to recover from challenges and use them as learning opportunities. Resilient
peole are perceived as having a positive outlook, handling difficulties calmly, and managing negative
emotions effectively.

Figure 4.2: Resilience engineering

Engineering source: rote.se | Resilience engineering

Resilience in engineering refers to the ability of complex systems to anticipate, adapt to, and recover
from unexpected disruptions or failures. This field emphasizes not just the prevention of failures but
also the capacity to maintain functionality and performance in the face of unforeseen challenges.
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Figure 4.3: Resilience in ecology | the adaptive cycle

Ecology source: resalliance.org | Adaptive cycle

Resilience in ecology refers to the capacity of an ecosystem to endure disturbances while preserving
its core functions, structures, and processes. This concept includes the ability to recover and adapt
to environmental changes, allowing ecosystems to endure challenges and thrive.
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Figure 4.4: Resilience in human-environment interactions

Human-environment interactions Resilience in sustainability and human-environment interactions
means the ability of social and ecological systems to absorb disturbances, adapt to changes, and
maintain functionality. This concept is crucial as it highlights how communities and ecosystems
withstand environmental stressors like climate change, pollution, and resource depletion, but also
social stressors like economic crises, conflicts, and pandemics.

According to (Reyers et al., 2022), resilience has reshaped sustainable development in six ways by
1) shifting focus from static capitals to dynamic capacities, 2) emphasizing relational processes
over isolated objects, 3) prioritizing adaptive processes over fixed outcomes, 4) considering systems
as open and interconnected rather than closed, 5) tailoring interventions to specific contexts
rather than applying generic solutions, and 6) recognizing complex causality over linear cause-effect
relationships. These shifts have led to innovative practices that better address the complexities of
sustainability, although challenges remain in aligning practice with theoretical and methodological
advancements in resilience science.

4.1.2 Resilience vs. dynamics

Resilience differs from merely being static or unchanging over time; resilient systems are often quite
dynamic. Conversely, systems that remain constant over time can lack resilience. Acknowledging the
difference between static stability and resilience is crucial (Meadows, 2009).

• Static stability is observable; it can be assessed by analyzing changes in the system’s conditions
over weeks or years.

• Resilience, on the other hand, is often only noticeable when the system is pushed beyond
its limits and breaks down. Because resilience may not be apparent without a systems view,
individuals frequently prioritize stability, productivity, or other more immediately observable
characteristics over resilience.

For example, just-in-time deliveries of products to retailers and parts to manufacturers have min-
imized inventory fluctuations and lowered costs across various industries. Nonetheless, this mode of
operation has rendered the production system more vulnerable to disruptions in fuel supply, computer
failures, labor shortages, and other potential shocks.
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Another example constitutes the intensive management of European forests. Over centuries, it
has transformed native ecosystems into single-age, single-species plantations, frequently composed of
nonnative trees. These plantations aim to produce wood and pulp consistently over time. However,
these forests have lost their resilience without multiple species interacting with each other and their
environment. As a result, we are witnessing their vulnerability to threats such as industrial air
pollution and pests like the bark beetle.

4.1.3 Resilience in the sustainability sciences

Resilience as a metaphor related to sustainability Resilience and sustainability are closely related
concepts in the context of social-ecological systems (SES). Resilience refers to the capacity of a system
to absorb disturbances, adapt to changes, and maintain its core functions and structures. Sustainabil-
ity, on the other hand, is the ability to meet the needs of the present without compromising the ability
of future generations to meet their own needs. A resilient system can be more sustainable because
it can withstand and adapt to shocks and stresses, ensuring long-term stability and functionality.
Therefore, enhancing resilience is often seen as a key strategy for achieving sustainability.

Resilience as a property of dynamic systems Dynamic systems are those that change over time,
often in response to internal or external stimuli. Resilience in these systems is about how well they
can absorb shocks and continue to operate effectively. For example, an ecosystem might experience a
natural disaster but still maintain its biodiversity and functionality.

Resilience as a measurable quantity Resilience is considered a measurable quantity through various
indicators and metrics that capture the capacity of systems to absorb disturbances, adapt to changes,
and maintain functionality. In field studies of social-ecological systems (SES), resilience can be assessed
using indicators related to ecological, social, economic, and institutional dimensions. These indicators
help researchers quantify resilience and understand how different systems respond to various stressors
and shocks.

It is important to acknowledge these different meanings of resilience when discussing sustain-
ability and human-environment interactions.

4.1.4 Resilience of what to what?

The resilience of what to what is a key question when applying the concept of resilience to sustain-
ability and human-environment interactions (Carpenter et al., 2001).

The ‘of what’ refers to system function or configuration to be sustained, such as biodiversity, ecosys-
tem services, social cohesion, or economic stability.

The ‘to what’ refers to the disturbances, shocks, or changes that the system needs to withstand, such
as climate change, natural disasters, economic crises, or social conflicts.

4.1.5 Specified vs. general resilience

Another key distinction in resilience research is between specified and general resilience (Folke et al.,
2010).

Specified resilience refers to the resilience of a system function to specific challenges or disturbances
(i.e., a narrowly defined what to what). For example, - a community might have specified resilience
to flooding by building dams and flood protection walls; - a farmer might use pest-resistant crops
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to increase resilience to specific pest infestations; or - an individual might get vaccinated against a
particular disease to increase resilience to that disease.

Generalized resilience refers to the system’s capacity to deal with the unknown, uncertainty, and
surprise (i.e., a broadly defined what to what). For example, - a community or society with functioning
institutions and social networks has generalized resilience to various shocks and stresses; - a framer
with a healthy business model and diversified crops has generalized resilience to various economic and
environmental changes; - a functioning immune system can provide generalized resilience to a wide
range of diseases;

4.1.6 Example | Resilience of farming systems

Figure 4.5: Framework to assess resilience of farming systems

4.1.7 Challenges

A lot of resilience scholarship utilizes qualitative methods, case studies, and conceptual frame-
works (i.e., mental, verbal and pictorial models) to understand the dynamics of social-ecological
systems. While these approaches are invaluable for generating diverse insights and hypotheses, they
have difficulty in providing a precise understanding of resilience that allows for quantitative
predictions and generalizable results in the sense of identifying universal system structures of
relevance.

Here, the mathematics of stochastic dynamics and bifurcations can help.

4.1.8 Learning goals

After this lecture, students will be able to:

• Explain how resilience concepts related within the context of sustainability science.
• Implement and simulate nosiy dynamic system models to illustrate different resilience

types using Python.
• Quantify changes in resilience to measure when a systems approaches a tipping point.
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4.2 Resilience types

While resilience, in general, is defined as the capacity of a system to absorb disturbances, adapt to
changes, and maintain functionality, it is useful to differentiate between three types of resilience that
can be distinguished based on the system’s response to stressors and shocks.

These three types are are often illustrated by ball-and-cup diagrams

Figure 4.6: Resilience types

How to formalize these concepts?

We start by importing the necessary libraries and setting up the plotting environment.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact, fixed

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

4.2.1 Robustness resilience

The capacity to resist (or absorb) change and continue to function in its present state

Robustness resilience (sometime only called robustness (Anderies et al., 2013)) is the most estab-
lished and straightforward type of resilience. It refers to the system’s ability to resist or absorb
changes and continue to function in its present state. A system with high robustness resilience
can withstand disturbances and shocks without significant changes to its structure or function. This
type of resilience is often associated with stability and persistence in the face of external stressors.

While it is the simplest form of resilience, it acknowledges that the future is inherently unpre-
dictable. We cannot observe the current state to full precision. And we cannot process and extrap-
olate all the information and uncertainty. Therefore, robustness resilience is a key concept in the
context of uncertainty and complexity.
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Robustness | Ball-and-cup diagram

The ball-and-cup pictorial model of the robustness resilience portrays a fixed cup (reprensting the
potential) and a ball (representing the system state)

Figure 4.7: Robustness resilience

External shocks change the system state along the x-axis.

However, this pictorial model leaves crucial questions unanswered:

• How does the system state change over time?
• How large and frequent are the shocks?
• What happens if the system state exceeds the cup?

Converting this pictorial model into a mathematical model requires us to become more specific.

Robustness | System dynamics and potenial

We formalize the idea of having a single basin of attraction by the following difference equation,

Δ𝑥 = 𝑥3 − 𝑐𝑥,

where 𝑐 is a parameter that controls the system’s stability and 𝑥 is the system state. As a side note,
this model is also known as the normal form of a subcritical pitchfork bifurcation in dynamical systems
theory (see exercise on Tipping Elements).

Integrating the negative difference equation, we obtain the potenial function 𝐺(𝑥) by Δ𝑥 =
−𝐺(𝑥)/𝑑𝑥 as

𝐺(𝑥) = 𝑐
2𝑥2 − 1

4𝑥4.

Converting the potential function into Python yields,

def G_robustness(x, c): return c/2*x**2 - x**4/4

We devise a function to plot the potential function, togehter with the system’s equilibirum points and
their stability (if 𝑐 > 0, 𝑥𝑒 = 0 is stable and 𝑥𝑒 = √𝑐 and 𝑥𝑒 = −√𝑐 are unstable; if 𝑐 < 0, 𝑥𝑒 = 0 is
unstable; see the exercise on Tipping Elements).
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def plot_robustness_potential(c=2):
xs=np.linspace(-2,2,101); plt.plot(xs, G_robustness(xs, c), '--', color='blue')
plt.xlabel(r"System state $x$"); plt.ylabel(r"Potential $G(x)$")

if c>0: # draw fixed points
xs=np.linspace(-np.sqrt(c), np.sqrt(c), 101); plt.plot(xs, G_robustness(xs,

c), color='blue')↪

plt.scatter(np.sqrt(c), G_robustness(np.sqrt(c), c), s=200, c='w',
edgecolor='blue')↪

plt.scatter(-np.sqrt(c), G_robustness(-np.sqrt(c), c), s=200, c='w',
edgecolor='blue')↪

plt.scatter(0, G_robustness(0, c), s=200, color='blue')
else:

plt.scatter(0, G_robustness(0, c), s=200, c='w', edgecolor='blue')
plt.ylim(-0.2, 1.1)

plot_robustness_potential()

We observe a single basin of attraction for the system state 𝑥. For 𝑐 > 0, the unstable fixed points
indicate where boundaries of the cup lie.

Robustness | Stochastic dynamics

To account for shocks or external changes to the system, we refine the update equation as
follows,

𝑥𝑡+1 = 𝐹𝑁(𝑥𝑡) = 𝐹𝐷(𝑥𝑡) + 𝑛𝜂𝑡 = 𝑥𝑡 + (𝑐𝑥𝑡 + 𝑥3
𝑡 ) + 𝑛𝜂𝑡.

The new stochastic or nosiy udpate equation 𝐹𝑁(𝑥𝑡) is composed of the orignial deterministic map
𝐹𝐷, plus a stochastic random variable 𝜂𝑡 of mean zero. The paramter 𝑛 regulates the strength
of the noise term.

We model the shocks by a normally distributed random variable 𝑛𝑡 with mean zero and unit
variance. The corresponding Python function is,

def F_robustness_noise(x, c, n): return x + x**3 - c*x + n*np.random.randn()

We define a plotting function to illustrate the system dynamics under stochasticity. It also shows the
basin of attraction, i.e., the region where the system state converges to the stable fixed point under
the purely deterministic dynamics.

def plot_robustness_noise(noiselevel=0.1, c=1.0, xinit=0.5):
iters=250
params=dict(c=c, n=noiselevel)

x = xinit # re-storing the initial values
trajectory = [x] # container to store the trajectory
for t in range(iters): # looping through the iterations

x_ = F_robustness_noise(x, **params) # the ** notation extracts the dict.
into the func. as parameters↪
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if np.abs(x)>3: break # stop the simulation when x becomes too large
trajectory.append(x_) # storing the new state in the container
x = x_ # the new state of the system `x_` becomes the current state `x`

plt.plot(trajectory, 'k'); plt.xlabel('time steps'); plt.ylabel('system state');
# makes plot nice↪

plt.fill_between([0, iters], [-np.sqrt(c), -np.sqrt(c)], [np.sqrt(c),
np.sqrt(c)], color='blue', alpha=0.25)↪

plt.xlim(0,250); plt.ylim(-3,3)

If the noise level is low, the system is resilient to shocks and remains in the basin of attraction.

plot_robustness_noise()

However, if the noise level is high, the system can escape the basin of attraction and diverge.

np.random.seed(42); # fixing the random seed for reproducibility
plot_robustness_noise(noiselevel=0.3)

The level of resilience of the system is the width between the unstable fixed points. This quantity
gives the maximum magnitude of a shock the system can still tolerate.

However, resilience in (social-)ecological systems is not always adequately described by this
form of resilience.

This has lead scholars to broaden the meaning of resilience.

Robustness | Real-world examples

Infrastructure and technial systems, such as bridges, buildings, and buildings, are often engineered
for robustness with a safety margin to withstand natural disasters like earthquakes or hurricanes. For
example, buildings in earthquake-prone areas are constructed with materials and designs that allow
them to absorb and dissipate seismic energy, minimizing damage and maintaining structural integrity.
Or an elevater can carry more weight than its maximum load capacity to account for unexpected
situations. However, these systems are not able to adapt to changing conditions or recover from
severe damage without external intervention.

Robust software systems are often designed to maintain functionality in the face of errors or un-
expected inputs. However, this robustness might be achieved through rigid error-handling mech-
anisms that don’t necessarily scale or adapt to the severity of the issue. For instance, in cyber
security, multi-layered security protocols, such as encryption, two-factor authentication, and fraud
detection algorithms, help maintain the security and reliability of digital systems. However, these
systems might not be able to adapt quickly to new types of cyber threats or changing regulatory
requirements without significant investment and effort.

In the mobility sector, the german car industry’s adherence on combustion engines can also be
seen as robustness resilience. The industry has been able to maintain its market share and profitability
for some time despite increasing pressure to transition to electric vehicles. However, this robustness
might not be sustainable in the long term as the industry faces challenges related to climate change,
air pollution, and changing consumer preferences.
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4.2.2 Adaptation resilience

Capacity of a system to adjust its responses to changing external drivers and continue
developing within the current stability domain or basin of attraction

Adaptation | Ball-and-cup diagram

The ball-and-cup pictorial model of the adaptation resilience portrays a variable cup (reprensting
the potential) and a ball (representing the system state). As before, shocks change the system state
along the x-axis.

Figure 4.8: Adaptation resilience

In adaptation resilience, the system can adjust its responses to changing external impacts. The
capacity of a system to absorb shocks is linked to the strenght of the shocks. Adaptation resilience
makes the resilience concept more flexible and adequate for (social-)ecological systems.

However, this pictorial model leaves the crucial question of how the system adjusts its responses
unanswered.

Converting this pictorial model into a mathematical model requires us to become more specific.
How could we convert the adaptation ball-and-cup diagram into a mathematical model?

Adaptation | System dynamics

We start from our previous dynamic systems model,

𝑥𝑡+1 = 𝑥𝑡 + (𝑥3
𝑡 − 𝑐𝑥𝑡) + 𝑛𝜂𝑡,

where 𝑥 is the system state, 𝑐 is the parameter that controls the system’s stability, and 𝑛 is the
parameter that regulates the strength of the noise term 𝜂𝑡.

To link the system’s responses to the external drivers, we introduce a feedback mechanism that
adjusts the parameter 𝑐 based on the magnitude of the shock. In other words, the parameter 𝑐
becomes a function of the shock’s strength 𝑐(𝑛).

𝑥𝑡+1 = 𝑥𝑡 + (𝑥3
𝑡 − 𝑐(𝑛)𝑥𝑡) + 𝑛𝜂𝑡.
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Adaptation | Feedback mechanism

The crucial question is how to formulate the feedback mechanism that adjusts the parameter 𝑐
based on the magnitude of the shock 𝑛.
From a stability analysis of the subcritical pitchfork bifurcation, we know that the system is stable
for 0 < 𝑐 < 2 (see Tipping Elements Exercise). Thus, we want the maximal value of 𝑐(𝑛) to be
2. This is an upper limit of how much noise the system can tolerate beyond which it cannot adapt
anymore. We use the tanh function tanh(𝑥) to achieve this, which results in values from −1 to 1.
Thus we shift it up by 1.
Furthermore, we want the minimal value of 𝑐(𝑛) at 𝑛 = 0 to have a base level 𝑏. This is a lower
limit of how much noise the system can tolerate. Thus, we add 𝑏 to the tanh function and devide the
tanh-part by (2 − 𝑏)/2 to scale it to the interval [𝑏, 2].
Last, we model the location where the tanh function switches from 𝑏 to 2 by the parameter 𝑙 and
controll the steepness of the transition by the parameter 𝑠.
Together, the feedback mechanism is formulated as,

𝑐(𝑎; 𝑏, 𝑠, 𝑙) = 𝑏 + (1 + tanh (𝑠(𝑎 − 𝑙))) (2 − 𝑏)
2 .

In Python, this function is implemented as,

def cfunc(n, base, loc, steep): return base +
((1+np.tanh(steep*(n-loc))))*(2-base)/2↪

Visualizing the function c(a) for different parameters yields

def plot_cfunc(n, base=0.25, loc=0.5, steep=5):
plt.plot(n, cfunc(n, base, loc, steep), label=f"b={base}, l={loc}, s={steep}")
plt.xlabel(r"Noise level $n$"); plt.ylabel(r"Control function $c(n)$")

n = np.linspace(0, 1.5, 101)
plot_cfunc(n, base=0.6, loc=0.6, steep=4)
plot_cfunc(n, base=0.4, loc=0.8, steep=8)
plot_cfunc(n, base=0.2, loc=1.0, steep=12)
plt.ylim(-0.05, 2.05); plt.legend();

We include this feedback mechanism in the dynamic systems update,

def F_adaptation_noise(x, n, base, loc, steep):
return x + x**3 - cfunc(n,base,loc,steep)*x + n*np.random.randn()

and define a plotting function which illustrates the feedback mechansim of how the control parameter
𝑐 responds to the noise strength 𝑎 together with the time evolution of the system under stochasticity.
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def plot_adaptation_noise(noiselevel=0.01, base=0.75, loc=0.5, steep=5.0):
iters=250; xinit = 0.5; ylim=(-1.5, 2.01)
params=dict(n=noiselevel, base=base, loc=loc, steep=steep)

fig = plt.figure(figsize=(10, 4))
basinstyle = {'color':'blue', 'alpha':0.25}

plt.subplot(1,2,1)
plt.plot(n, cfunc(n, base, loc, steep), label='$c(n)$', color='green')
plt.plot(n, np.sqrt(cfunc(n, base, loc, steep)), label='$\sqrt{c(n)}$',
**basinstyle)↪

plt.plot(n, -np.sqrt(cfunc(n, base, loc, steep)), **basinstyle)
plt.plot([noiselevel, noiselevel], [-2, 2], 'k--')
plt.ylim(ylim); plt.xlabel('Noise level $n$');
plt.legend()

plt.subplot(1,2,2)
x = xinit # re-storing the initial values
trajectory = [x] # container to store the trajectory
for t in range(iters): # looping through the iterations

x_ = F_adaptation_noise(x, **params) # the ** notation extracts the dict.
into the func. as parameters↪

if np.abs(x)>3: break # stop the simulation when x becomes too large
trajectory.append(x_) # storing the new state in the container
x = x_ # the new state of the system `x_` becomes the current state `x`

plt.plot(trajectory, 'k');
plt.xlabel('Time steps $t$'); plt.ylabel('System state $x$');
cval = cfunc(**params)
plt.fill_between([0, iters], [-np.sqrt(cval), -np.sqrt(cval)],

[np.sqrt(cval), np.sqrt(cval)], **basinstyle)
plt.xlim(0,250); plt.ylim(ylim)

For a small noise level 𝑛, the system is resilient to shocks and remains in the basin of attraction,
independent of the designed feedback mechanism.

plot_adaptation_noise(noiselevel=0.01, base=0.5, loc=0.5, steep=5.0)

For large noise leves, the location 𝑙 where the feedback mechanism kicks in becomes crucial. If 𝑙 is too
large, the system cannot adapt to the shocks and diverges.

np.random.seed(42); # fixing the random seed for reproducibility
plot_adaptation_noise(noiselevel=0.35, base=0.5, loc=0.4, steep=5.0)

Decreasing the location 𝑙 allows the system to adapt to the shocks and remain in the basin of attrac-
tion.

np.random.seed(42); # fixing the random seed for reproducibility
plot_adaptation_noise(noiselevel=0.35, base=0.5, loc=0.2, steep=5.0)
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It is important to note, that the way we implemented adaptation resilience is just one of many
possible ways to make this concept more precise. Instead of widening the basin of attraction with
increased noise levels, the location of the basins minimum could be shifted gradually to areas with
less noise.

Adaptation resilience makes the resilience concept more flexible and adquate for (social-)ecological
systems. However, sometimes, a system response to shocks by a complete reorganization, instead of
just absorbing a shock.

Adaptation | Real-world examples

Natural ecosystems are being used as part of adaptation strategies to enhance resilience. For
example, coastal mangrove forests show adaptation to sea level rise and storm surges. As water
levels increase, mangroves accumulate sediment and organic matter to elevate their root systems,
allowing them to keep pace with gradual sea level changes. This natural adaptation helps protect
coastlines from erosion and storm damage (UNEP).

Even infrastructure can be designed to adapt to changing conditions. Instead of building higher
and more robust defenses, the Netherlands adopted a “Room for the River” strategy (Dutch Water
Sector). The key idea is to restore the river’s natural flood plain in places where it is least harmful in
order to protect those areas that need to be defended., i.e., to live with the water instead of fighting it:
the strategy includes the lowering the levels of flood plains, creating water buffers, relocating levees,
increasing the depth of side channels, and the construction of flood bypasses.

In the mobility sector, electric cars can be seen as another example of adaptation resilience. As the
world shifts towards sustainable energy sources, electric vehicles are becoming more popular, replacing
fossil fuel-powered cars. Yet, while the transition to electric vehicles requires a significant change in
infrastructure, including charging stations, battery production, and recycling facilities, the dominance
of private cars as a mode of transportation remains largely unchanged.

4.2.3 Transformation resilience

Capacity to create a fundamentally new system when ecological, economic, or social struc-
tures make the existing system untenable

Transformation | Ball-and-cup diagram

The ball-and-cup pictorial model of the transformation resilience portrays multiple cups (repren-
sting the potential) and a ball (representing the system state). As before, shocks change the system
state along the x-axis.
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Figure 4.9: Transformation resilience

In transformation resilience, the system can reorganize into a fundamentally new regimes, or
state when the existing system state or regime becomes untenable. Thus, in contrast to the other
resilience types, transformation resilience conceptualized one existing state and at least one new state.
There must be at least two basins of attraction.

However, this pictorial model leaves the crucial questions unswered how the basins of attraction
are shaped, in addition to how the system state changes over time and how large and frequent the
shocks are.

Converting this pictorial model into a mathematical model requires us to become more specific.

How could we convert the transformation ball-and-cup diagram into a mathematical model?

We need a dynamical system with multiple stable states.

Transformation | Alternative-stable-states system

We refine the system from the lecture on Tipping Elements with the difference equation,

Δ𝑥 = (𝑥 − 𝑎𝑥3 + 𝑐 + 𝑛𝜂)1
𝜏 ,

where 𝜂 represents the noise term with mean zero and 𝑛 the strength of the stochasticity. As before,
𝜏 represents the typical time scale of the system, and thus, inverse strength of the system’s change,
and 𝑎 is a parameter that determines the strength of the balancing feedback loop in relation to the
reinforcing feedback loop (with unit stength). The parameter 𝑐 represents the external driver that can
push the system over the tipping point.

Again, we model the shocks by a normally distributed random variable 𝜂𝑡 with mean zero and unit
variance. The corresponding Python function is,

def F_tipmod_noise(x, drive, shape=1, timescale=0.1, noiselevel=0):
return x + (x - shape*x**3 + drive + noiselevel*np.random.randn())/timescale

We define a plotting function to illustrate the system dynamics over time under stochasticity. We set
the default values for the shape parameter 𝑎 = 1 and the timescale paramter 𝜏 = 2.
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def plot_transformation_trajectory(drive=-0.3, shape=1, timescale=2, noiselevel=0.0,
initalstate=0.5):↪

iters=2500; params=dict(drive=drive, shape=shape, timescale=timescale,
noiselevel=noiselevel)↪

x = initalstate # re-storing the initial values
trajectory = [x] # container to store the trajectory
for t in range(iters): # looping through the iterations

x_ = F_tipmod_noise(x, **params)
if np.abs(x)>3: break # stop the simulation when x becomes too large
trajectory.append(x_) # storing the new state in the container
x = x_ # the new state of the system `x_` becomes the current state `x`

plt.plot(trajectory, 'purple'); plt.ylim(-1.4, 1.4)
plt.xlabel('Time steps $t$'); plt.ylabel('System state $x$'); # makes plot nice
return np.array(trajectory);

With the right system characteristics (i.e., its parameters) we observe a noise induced transition
between the two stable states.

np.random.seed(0); # fixing the random seed for reproducibility
plot_transformation_trajectory(drive=-0.3, noiselevel=0.15);

Without noise, the system converges and remains to the positive equilibrium point.
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plot_transformation_trajectory(drive=-0.3, noiselevel=0.0);

Under which conditions does the system transition between the two stable states as a result of the
random shocks?

How can we understand better under what conditions the system switches between the two stable
states under stochastic shocks?

Transformation | Potential function

We make use of the potential function (see Tipping Elements) to improve our understanding of the
system dynamics. As a reminder, the potential function 𝐺(𝑥) is defined as the negative integral of the
system change Δ𝑥. Thus, for the difference equation Δ𝑥 = 1

𝜏 (𝑥 − 𝑎𝑥3 + 𝑐), we have

𝐺(𝑥) = −1
𝜏 (1

2𝑥2 − 1
4𝑎𝑥4 + 𝑐𝑥) .

In Python, we have,

def G_tipmod(x, drive, shape, timescale): return - (x**2/2 - shape*x**4/4 +
drive*x)/timescale↪

To visualize the potential function, we define

def plot_tipmod_potential(drive=-0.3, shape=1.0, timescale=2):
xs=np.linspace(-2,2, 501); plt.ylim(-0.5, 0.5);
plt.plot(xs, G_tipmod(xs, drive, shape, timescale), color='k')
plt.ylabel(r'Potential $G(x)$'); plt.xlabel(r'System state $x$')

# numerically find and plot equilibrium points
drive_ = shape*xs**3 - xs
xeq = xs[np.isclose(drive_-drive, 0.0, atol=0.02)]
plt.plot(xeq, G_tipmod(xeq, drive, shape, timescale), 'o', ms=12, color='k')

plot_tipmod_potential()
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Transformation | Bifurcation diagram

We also visualize the bifurcation diagram (see Tipping Elements) to understand the system’s stability
and the location of the tipping point.

def plot_bifurcation_tipmod(shape=1.0, timescale=2.0, cextent=[-1.4, 1.4]):
xe=np.linspace(*cextent, 1001) # equilibrium points
driver = shape*xe**3 - xe # parameter c
plt.plot(driver, xe, "--", color='k'); # equilibrim point

# stability
def F_(x, shape, timescale): return 1 + (1-3*shape*x**2)/timescale
cond=np.logical_and(F_(xe, shape, timescale)<1, F_(xe, shape, timescale)>-1)
plt.plot(driver[cond], xe[cond], ".", c='green')

plt.xlabel(r'External driver $c$'); plt.ylabel(r'Equilibrium points $x_e$');
plt.xlim(cextent);

plot_bifurcation_tipmod()
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4.2.4 Transformation | Combined analysis

Putting all together shows us how potential, bifurcation diagramm and the noisy trajectories inter-
act.

def plot_tranformation(drive=-0.3, shape=1, timescale=2, noiselevel=0.0,
initalstate=0.5):↪

fig = plt.figure(figsize=(10,5))

ax1 = fig.add_subplot(2,2,1)
plot_tipmod_potential(drive=drive, shape=shape, timescale=timescale)

ax2 = fig.add_subplot(2,2,2)
plot_bifurcation_tipmod(shape=shape, timescale=timescale)
ax2.plot([drive , drive], [-1.5, 1.5], 'k-') # include driver value
ax2.set_xlim(-0.5, 0.5)

ax3 = fig.add_subplot(2,1,2)
traj = plot_transformation_trajectory(drive=drive, shape=shape,

timescale=timescale, noiselevel=noiselevel, initalstate=initalstate)

# include trajectory in the potential
ax1.scatter(traj, G_tipmod(traj, drive=drive, shape=shape, timescale=timescale),

↪

alpha=0.5, s=40, c=np.arange(len(traj)), cmap='plasma_r',zorder=10)

# include trajectory in the bifurcation diagram
ax2.scatter(np.ones_like(traj)*drive, traj,

alpha=0.5, s=40, c=np.arange(len(traj)), cmap='plasma_r',zorder=10)

plt.tight_layout()

Now, we can reanalyze our sitation from above. When there is one fixed point dominating (i.e.,
having a larger basin of attraction), we observe a noise-induced transition to that fixed
point. The timeseries is shown in the potential and the bifurcation diagram with time going from
light to dark colors.

np.random.seed(0); plot_tranformation(drive=-0.3, noiselevel=0.15)
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Where there is only one stable fixed point, also the stochastic system will evolve around that state.

plot_tranformation(drive=-0.42, noiselevel=0.15)

We observe bistable flickering when both fixed points are stable and the noise is not too small and not
too large.

np.random.seed(0); plot_tranformation(drive=0, noiselevel=0.45)
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These results show that richness of phenomena that our relativly simple model can explain.

4.2.5 Transformation | Real-world examples

In the mobility sector, moving away from system where private cars dominate to a system where
public transportation, cycling, and walking are the primary modes of transportation can be seen
as an example of transformation resilience. This shift requires a fundamental reorganization of the
transportation system, including changes in infrastructure, policies, and social norms. While this
transformation is challenging, it can lead to significant benefits, such as reduced traffic congestion, air
pollution, and greenhouse gas emissions.

In the energy sector, transitioning from fossil fuels to renewable energy sources, such as solar, wind,
and hydropower, is another example of transformation resilience. This shift requires a fundamental
reorganization of the energy system, including changes in energy production, distribution, and con-
sumption. While this transformation is complex and costly, it can lead to significant benefits, such as
reduced greenhouse gas emissions, air pollution, and dependence on finite resources.

In the agriculture sector, transitioning from conventional farming practices to regenerative agricul-
ture is another example of transformation resilience. This shift requires a fundamental reorganization
of the food system, including changes in farming methods, land use, and food production. While
this transformation is challenging, it can lead to significant benefits, such as improved soil health,
biodiversity, and food security.

4.3 Quantifying resilience

So far, we conceptualized multiple facets of resilience through simple dynamical system models.
While these models are crucial for understanding the underlying mechanisms of resilience, it is difficult
to apply these models to real-world systems directly.

For instance, critical questions around resilience, tipping elements, and regime shifts of real-world
systems is how resilient is the system? and how far away is the system from a tipping
point?. These questions are challenging to answer in empirical systems because we cannot and do
not want to trigger the regime shift to find out. Tipping elments are often hidden and uncertain.
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In the following, we will discuss how we can quantify resilience and thus measure whether a
system is approaching a tipping point, based on the conceptual models we discussed above.

4.3.1 Critical slowing down

Critical slowing down describes the phenomenon that the internal time scale a system operates
on increases, when the system approaches as tipping point. As a consequence, a system close to
a tipping point tends to undergo larger changes in response to perturbations and takes longer
to recover from them.

How can we capture this phenomenon using a quantitative model?

Let’s reuse the robustness resilience model, the deterministic subcritical pitch-fork bifurcation, Δ𝑥 =
𝑥3 − 𝑐𝑥, to illustrate that phenomenon.

plot_robustness_potential()

We know, the fixed point at 𝑥𝑒 = 0 is stable for 𝑐 > 0. Its basin of attraction extends from −√𝑐 to√𝑐.
We want to simulate how long in takes on average from all points in the basin of attraction to reach
the fixed points.

To do so, we have to define a notion of convergence.

Let’s look an exemplary trajectory:

c = -1.2; x = 1.0
trajectory = [x]
for _ in range(100):

x_ = F_robustness_noise(x, c=1.2, n=0) # n=0 noiseless
trajectory.append(x_)
x = x_

trajectory = np.array(trajectory)
plt.plot(trajectory);
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When it reached the equilibirum, it does not change any further.

Investigating the change between timesteps on a logarithmic axis,

plt.plot(np.abs(trajectory[0:-1] - trajectory[1:])); plt.yscale('log');

we find, the changes do become smaller.

But it is sufficient for us to set a threshold tolerance level, below which we want to consider a
trajectory as converged. Let’s use 10−9.

def simulate_trajectory(xinit, c, threshold=10e-9, maxiter=10000):
x = xinit
trajectory = [x]
for _ in range(maxiter):

x_ = F_robustness_noise(x, c, n=0)
trajectory.append(x_)
if np.abs(x-x_) < threshold: # <-- HERE

break
x = x_

return np.array(trajectory)

Note, we still keep a maximum number of iterations to not get stuck here, should the threshold never
be reached.

Now, plotting the simulated trajectory, we observe that it automatically stopped when the threshold
was reached.
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plt.plot(simulate_trajectory(xinit=1.0, c=1.2));

Using this threshold, we can set up our simulation,

eps = 10e-9 # The numberical threshold to be use for a small quantity
cvs = np.linspace(0+eps, 0.8, 501) # The external parameters a to be varried

average_lens = []
for c in cvs:

xs = np.linspace(-np.sqrt(c)+eps, np.sqrt(c)-eps, 101)
# starting slightly off the unstable fixed points

lens = [len(simulate_trajectory(xinit, c, threshold=eps,
maxiter=10000)) for xinit in xs]

assert max(lens) < 10000
average_lens.append(np.mean(lens))

to demonstrate the phenomenon of critical slowing down,

plt.plot(cvs, average_lens, '.'); plt.ylabel('<Timesteps to convergence>');
plt.xlabel('External drive $c$');↪

When we approach the tipping point at 𝑐 = 0, the average number of timesteps it takes to converge
to the equilibirum increases sharply.
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4.3.2 Early-warning signals

Next, we use the phenomenon of critical slowing down as a sign of resilience loss to create an early-
warning signal. Early-warning signals are important because they allow us to anticipate critical
transitions before they occur.

Early-warning signals are based on statistical indicators of the system behavior. Specifically, we
will use the autocorrelation of the system’s time series. Autocorrelation is the correlation of a signal
with a delayed copy of itself as a function of the delay. It measures the degree of similarity between a
given time series and a lagged version of itself.

Conceptual model

Let’s reuse the our tipping elment model showing alternative stable states,

Δ𝑥 = (𝑥 − 𝑎𝑥3 + 𝑐 + 𝑛𝜂)1
𝜏 ,

where 𝜂 represents the noise term with mean zero and 𝑛 the strength of the stochasticity. As before,
𝜏 represents the typical time scale of the system, and thus, inverse strength of the system’s change,
and 𝑎 is a parameter that determines the strength of the balancing feedback loop in relation to the
reinforcing feedback loop (with unit stength). The parameter 𝑐 represents the external driver that can
push the system over the tipping point.

We create a synthetic time series, along which we slighlty reduce the resilience of one equilibirum
by changing the drive parameter 𝑐 with each iteration step.

xinit=-1.1 # the system's initial condition
iters=1000 # how long to simulate
params=dict(b=0.5,c=0.5,d=0.05) # other parameter values

np.random.seed(0) # fixing the random seed to make this reproducible
c=0 # initial value of the 'resilience' parameter
trajectory = [] # container to store the trajectory
x = xinit # re-storing the initial values
for t in range(iters): # looping through the iterations

x_ = F_tipmod_noise(x, drive=c, shape=1, timescale=2, noiselevel=0.25)

# F(x, a=a, **params) # the ** notation extracts the dict. into the func. as
parameters↪

if np.abs(x)>3: break # stop the simulation when x becomes too large
trajectory.append(x_) # storing the new state in the container
x = x_ # the new state of the system `x_` becomes the current state `x`
c += 0.00038 # we slightly increase c (i.e., reduce the resilience)

plt.plot(trajectory, 'k'); plt.xlabel('time step t'); plt.ylabel('system state x');
# makes plot nice↪
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Now imagine, that we do not know the underlying model, but only have the time series. How can we
detect the loss of resilience?

Scatter plot

To visualize the autocorrelation, (lag-1 temporal autocorrelation or AR(1) to be specific), we
create a scatter plot of 200 points of our time series versus the 200 points of our time series at the
next time step (lag-1). In this case, 200 is the size of our data window.

def scatter_autocorrelation(start=0):
fig, axs = plt.subplots(1,2, figsize=(12,2.8)) # creates the two axes
axs[0].scatter(trajectory[start:start+200], trajectory[start+1:start+201], s=10,
c='blue');↪

axs[0].set_xlabel(r'$x_{t+1}$'); axs[0].set_ylabel(r'$x_{t}$'); # makes first
axis nice↪

axs[1].plot(trajectory, 'k'); # plot the time series
axs[1].fill_betweenx([-1.25, 1.5], [start, start], [start+200, start+200],
color='blue', alpha=0.5) # show window↪

axs[1].set_xlabel('time steps'); axs[1].set_ylabel(r'system state $x$');
axs[1].set_xlim(0, 1000) # makes axis nice↪

How do we see the autocorrelation in this plot?

scatter_autocorrelation(start=0)

The autocorrelation is the correlation between the time series and a lagged version of itself. Thus,
it is the correlation between the x-axis and the y-axis of the scatter plot on the left.

Then we slide our window of 200 system points through our time series. How does the scatter
plot change? And what does the mean for the autocorrleation?

scatter_autocorrelation(start=310)
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scatter_autocorrelation(start=620)

We visually can tell that the autocorrelation increases as we approach the tipping point.

Autocorrelation

To quantify our visual understanding, we finally calculate the lag-1 temporal autocorrelation.

For that, we use the numpy.corrcoef function. Thus, the correlation matrix between the time
series points from index 0 to 200 and from index 1 to 201 is given by,

np.corrcoef(trajectory[0:200], trajectory[1:201])

array([[1. , 0.20713096],
[0.20713096, 1. ]])

Thus, we have to extract one of the off-diagonal elements,

np.corrcoef(trajectory[0:200], trajectory[1:201])[0,1]

0.2071309613708747

Sliding through the time series from the beginning until the 600nd time step,

AR1 = [np.corrcoef(trajectory[start:start+200], trajectory[start+1:start+201])[0,1]
for start in range(0,599)]
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plt.plot(AR1); plt.ylabel('AR(1)'); plt.xlabel('Time step $t$');

shows a clear rise of the lag-1 autocorrelation when approching the tipping point, indicating a loss
of resilience.

This method can be used on time series data only. It does not require knowledge about the
exact systems equation.

4.3.3 Example | Greenland Ice Sheet

A detected critical slowing down of its melt rates suggests that the western Greenland Ice Sheet is
close to a tipping point (Boers & Rypdal, 2021).

Figure 4.10: Critical slowing down in the Greenland Ice Sheet

4.4 Learning goals revisited

In this chapter, we have explored the concept of resilience in the context of sustainability science and
human-environment interactions.

We have studied different types of resilience, including robustness, adaptation, and transformation
resilience, and how they can be modeled using dynamic systems theory.
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Last, we have examined how resilience can be quantified using early-warning signals based on the
phenomenon of critical slowing down as indicators of system stability and resilience. By understand-
ing these concepts and methods, we can better assess the resilience of social-ecological systems and
anticipate critical transitions before they occur.
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5 State transitions

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

5.1 Motivation | State-transitions models

State-and-transition models are useful tools to explain the causes and consequences of ecosystem
change.

Figure 5.1 shows a state-transition model of sandy-loamy alluvails soils in the dry steppe of eastern
central Mongolia.

Figure 5.1: State transitions in the dry steppe of Mongolia

The model describes the dynamics of the vegetation in the region. The vegetation can be in one of
four states: a reference state, Forb decreased state, Stipa grandis decreased state, or Degraded state.
The arrows indicate the possible transitions between the states (Biggs et al., 2021).

Figure 5.2 shows possible state transitions between states of different land cover types in the Brazilian
Amazon.

The thickness of the arrows indicates the probability of the transition. The land cover can be in one of
five states: Annual crops, Forest, Dirty Pasture, Clean Pasture, Secondary Vegetation, plus an Other
state representing all other possible land cover types (Müller-Hansen et al., 2017).

State-and-transition models are often co-developed with stakeholders and are used as heuristic
tools to understand the dynamics of ecosystems. They are also used in scenario development to
explore possible futures.
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Figure 5.2: Land-cover transitions in Brazilian Amazon

Note, that terms such as state-and-transition model and transition model have been widely used in
the literature without a clear, formal definition (Daniel et al., 2016).

There are various computational variants of state-and-transition models. The simplest and most
basic model is the one of a Markov Chain.

5.1.1 Learning goals

After this lecture, students will be able to:

• Name and explain the components of a Markov chain model and how the model relates to
gernal dynamic system models to embed this model in the context of integrated nature-society
models.

• Simulate and visualize Markov chain models stochastically, with ensembles, and via its state
distribution

• Compute the stationary distribution of a Markov chain model numerically, analytically and
explain the conditions for its existence to understand the long-term behavior of the model.

• Investigate the transient behavior of a Markov chain model to understand the short-term
behavior of the model.

• Compute the typical timesacle of a Marko chain transition to relate the model to real-world
systems.

5.2 Markov chains

Markov chains model systems that transition probabilistically between a finite set of states.

In fact, Markov chains are a very general model that can be applied to all kinds of transitions. For
example, a political system might transition between democratic and dictatorial, a market between
volatile and stable regimes, or a person between happy, contemplative, anxious, and sad (Page, 2018,
Chapter 17).

The movements between states occur according to fixed probabilities. The probability that a country
transitions from authoritarian to democratic in a given year might be 5%; the likelihood that a person
transitions from anxious to tired within an hour maybe 20%.
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Named after Russian mathematician Andrey Markov, the essential element of the model is the Markov
property. This property states that the probability of transitioning to any particular state depends
solely on the current state and not on the history of states that preceded it.

More formally, we define a Markov chain by the following elements:

• A discrete set of states 𝒮 = {𝑆1, 𝑆2, … , 𝑆𝑍}.
• A transition matrix T with transition probabilities 𝑇 (𝑖, 𝑗), for 1 < 𝑖, 𝑗 < 𝑍, where 𝑇 (𝑖, 𝑗) is the

probability of transitioning from state 𝑆𝑖 to state 𝑆𝑗.
• A disscrete-time index 𝑡 = 0, 1, 2, ….
• An initial state distribution p0 = (𝑝0(𝑆1), 𝑝0(𝑆2), … , 𝑝0(𝑆𝑍)), with 𝑝𝑡(𝑠) denoting the probability

or fraction of state 𝑠 ∈ 𝒮 at time 𝑡.

Thus, the transition matrix T is a square matrix of size 𝑍 × 𝑍 with ∑𝑠′ 𝑇 (𝑠, 𝑠′) = 1, where 𝑠
denotes the current, and 𝑠′ the next state. Transition probabilites have to sum up to 1. We must go
somewhere.

5.2.1 A simple example

Let us consider a simple example of a Markov chain with two states modeling a prosperous and a
degraded state of Nature.

Figure 5.3: A simple Markov chain

5.2.2 Computational model

Let us convert the mathematical into computationa model in Python. We start by importing the
necessary libraries and setting up the plotting environment.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪
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But how to model the transition?

Transition matrix. We know that a the rows of our transition matrix have to sum up to one,
∑𝑠′ 𝑇 (𝑠, 𝑠′) = 1. Thus, we can simplify the transition matrix by only giving a collpase probability 𝑝𝑐
and a recovery probability 𝑝𝑟,

( 𝑇 (p, p) 𝑇 (p, d)
𝑇 (d, p) 𝑇 (d, d) ) = ( 1 − 𝑝𝑐 𝑝𝑐

𝑝𝑟 1 − 𝑝𝑟
) .

Lets fix the values for the transition probabilities 𝑝𝑐 and 𝑝𝑟, for now,

pc = 0.05
pr = 0.01

Then we can implement the transition matrix as a two-dimensional numpy array,

T = np.array([[1-pc, pc],
[pr, 1-pr]])

T

array([[0.95, 0.05],
[0.01, 0.99]])

5.3 Simulations

5.3.1 A single simulation run

Considering the system to be in exaclty one of its states at each time step, we can simulate the
Markov chain stochastically by choosing the next state (using numpy.random.choice) according
to the transition probabilites as given in the transition matrix (by specifing the probabilities as
p=TransitionMatrix[current_state]).

def simulate_markov_chain(TransitionMatrix, InitialState, NrTimeSteps):
trajetory = -1*np.ones(NrTimeSteps, dtype=int)
trajetory[0] = InitialState
for t in range(1, NrTimeSteps):

trajetory[t] = np.random.choice([0, 1], # sample next state
p=TransitionMatrix[trajetory[t-1]])

return trajetory

Visualizing the results, we can see how the system evolves over time.

np.random.seed(1818)
trajectory = simulate_markov_chain(T, 0, 500)
plt.plot(1-np.array(trajectory), ls='-', marker='.', color='purple');
plt.xlabel('Time steps $t$'); plt.ylabel('System state $s$');

107



This stochastic simulation of a single run has a strong resemblance to the previous dynamic system
models we introduced. We can interpret the Markovian states as the stable equilibirum points of
dynamic system with nonlinear changes and noise (see Figure 5.4 from 02.03-Resilience).

Figure 5.4: Noise induced transitions

However, due to the stochastic nature of the Markov chain, it is hard to judge the system’s behavior
from a single run. We need to average over many runs to get a clearer picture of the system’s
behavior.

5.3.2 Ensemble simulation

Let’s repeat the previous simulation to create an ensemble of stochastic simulation runs. Let’s
assume we want an ensemble of 100 runs.

ensemble = []
for _ in range(100):

state = 0
trajectory = simulate_markov_chain(T, state, 500)
ensemble.append(trajectory)

ensemble = np.array(ensemble)

It is always a good idea to investigate the object one has just created for consistency, for instance,
checking the shape of the ensemble.
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ensemble.shape

(100, 500)

The first dimension of the ensemble is the number of runs, the second dimension is the number of time
steps.

Visualizing the ensemble by takeing the mean over the first dimension (using ensemble.mean(axis=0)),

ensemble.mean(axis=0).shape

(500,)

we can see how the system evolves over time on average.

plt.plot(1-ensemble.mean(0), ls='-', marker='.', color='blue')
plt.ylim(0, 1); plt.xlabel('Time steps $t$'); plt.ylabel('Average system state

$s$');↪

We observe two phases. First a drop. Second, some fluctuations around approx. 0.2.

Thus, after around 50-100 iterations, the system is in approximatly 20 of 100 runs in the the prosperous
state.

This is the statistical equlibirum or the long-run stationary distribution of the Markov chain.

Calculating ensembles is computationlly expensive. Can we make the computation more effi-
cient? To do so, we investigate how to update the state distribution of the Markov chain at each
time step.
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5.3.3 Markov chain update

A Markov chain update can be nicely represented by a matrix operation. The new state p𝑡+1
equals the old state p𝑡 applied to the transition matrix T,

p𝑡+1 = p𝑡T.

We write the state distribution p𝑡 before the transition matrix T on the right hand side to indicate
the flow of information from left to right. We can also write this as follows,

𝑝𝑡+1(𝑠′) = ∑
𝑠

𝑝𝑡(𝑠)𝑇 (𝑠, 𝑠′),

where 𝑠 denotes the current, and 𝑠′ the next state. The next system state 𝑠′ depends on the current
state 𝑠 and the transition from 𝑠 to 𝑠′ as given by the transition matrix T.

Transposing the transition matrix, we can rewrite the Markov chain update as 𝑝𝑡+1(𝑠′) =
∑𝑠 𝑇 T(𝑠′, 𝑠)𝑝𝑡(𝑠) or

p𝑡+1 = TTp𝑡

where TT is the transpose of the transition matrix. Rewriting this update as such highlights the fact
that Markov chains can be intepreted as a special kind of dynamic system with linear changes
(see 02.01-Nonlinearity) but with one additional property. The sum of all variables is always one.

5.3.4 State distribution evolution

We use the matrix update to simulate how the state distribution evolves.

ps = [1, 0] # initial state distribution
p_trajectory = [ps] # store the state distribution over time

for i in range(500):
ps = ps @ T # matrix update for the state distribution
p_trajectory.append(ps)

p_trajectory = np.array(p_trajectory)

The trajectory of the state distribution has the number of time steps as the first dimension and the
number of states as the second dimension.

p_trajectory.shape

(501, 2)

Since the state distribution is a probability distribution, the sum of all states at each time step should
be one. We can check this by summing over the states at each time step.

np.allclose(p_trajectory.sum(axis=-1), 1.0)

True
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Visualizing the state distribution evolution together with the ensemble average reveals a close resembles
between the two.

plt.plot(1-ensemble.mean(0), ls='-', marker='.', color='blue', label='Ensemble
average')↪

plt.plot(p_trajectory[:, 0], ls='-', marker='.', color='red', label='State
distribution')↪

plt.xlabel('Time steps $t$'); plt.ylabel('Average system state $s$'); plt.legend();

The fluctuations of the ensemble average around the long-run stationary distribution are due to the
finite number of runs in the ensemble. The more runs we have, the closer the ensemble average will
be to the long-run stationary distribution.

The flat line of the state distribution evolution indicates that the system has reached a statistical
equilibirum.

For example, a statistical equilibrium in a Markov model of ideology would allow for people to tran-
sition between liberal, conservative, and independent, but the proportions of people of each ideology
would remain unchanged. When applied to a single entity, a statistical equilibrium means that long-
run probability of the entity being in each state does not change. A person could be in a statistical
equilibrium in which he is happy 60% of the time and sad 40% of the time. The person’s mental
state could change from hour to hour, but his long-run distribution across those states does not (Page,
2018).

However, can we compute the stationary distribution somehow directly?

5.4 Stationary distribution

After showing how to compute the stationary distribution directly, we will first, compute it numeri-
cally, second, compute it symbolically, and last, we will discuss the conditions for its existence.

From the update equation,
p𝑡+1 = p𝑡T.

we know that the stationary distribution p∗ must satisfy,

p∗ = p∗T

This looks like the defining equation of a (left) eigenvector with the eigenvalue 1,

1p∗ = p∗T
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5.4.1 Numerical stationary distribution

Fortunately, numpy has built-in routine to compute the eigenvectors of a matrix. Since the standard
routine np.linalg.eig only computes the right eigenvectors, we need to apply the routine to the
transposed matrix:

eigvv = np.linalg.eig(T.T)
eigvv

EigResult(eigenvalues=array([0.94, 1. ]), eigenvectors=array([[-0.70710678, -0.19611614],
[ 0.70710678, -0.98058068]]))

eigvv[1][:,1]

array([-0.19611614, -0.98058068])

Normalizing the eigenvector, such that it entries comprise a probability distribution, yields

pstar = eigvv[1][:,1] / sum(eigvv[1][:,1])
pstar

array([0.16666667, 0.83333333])

Visualizing the stationary state distribution together with the state distribution evolution and the
ensemble average reveals that the calculated stationary distribution fits perfectly to the distribution
evolution in (statistical) equilibirum.

plt.plot(1-ensemble.mean(0), ls='-', marker='.', color='blue', label='Ensemble
average')↪

plt.plot(p_trajectory[:, 0], ls='-', marker='.', color='red', label='State
distribution')↪

plt.plot([0,500], [pstar[0], pstar[0]], '-', color='k', label='Stationary
distribution')↪

plt.xlabel('Time steps $t$'); plt.ylabel('Average system state $s$'); plt.legend();
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How does this result depend on the model parameters, the collapse probability 𝑝𝑐 and the recovery
probability 𝑝𝑟?

Can we compute the stationary distribution analytically, i.e., can we derive a mathematical
equation which says how the stationary distribution depends on the collapse probability 𝑝𝑐 and the
recovery probability 𝑝𝑟?

5.4.2 Analytical stationary distribution

Fortunately, we can use Python’s library for basic symbolic calculations sympy, to compute the eigen-
vectors of the transition matrix symbolically.

p_c, p_r = sp.symbols("p_c, p_r")

T_ = sp.Matrix([[1-p_c, p_c],
[p_r, 1-p_r]])

T_

[1 − 𝑝𝑐 𝑝𝑐
𝑝𝑟 1 − 𝑝𝑟

]

Applying the .eigentvects() method

T_.T.eigenvects()

[(1,
1,
[Matrix([
[p_r/p_c],
[ 1]])]),

(-p_c - p_r + 1,
1,
[Matrix([
[-1],
[ 1]])])]

shows us which eigenvector corresponds to the eigenvalue 1. Upon normalizing the eigenvector, we
obtain the analytical stationary distribution,

pstar_ = T_.T.eigenvects()[0][2][0] # selecting the eigenvector
pstar_ = pstar_ / (pstar_[0] + pstar_[1]) # normalizing the eigenvector
sp.simplify(pstar_)

[
𝑝𝑟

𝑝𝑐+𝑝𝑟𝑝𝑐
𝑝𝑐+𝑝𝑟

]

Thus, only the fraction of 𝑝𝑐 and 𝑝𝑟 determines the stationary distribution. The stationary
distribution remains the same, if you multiply the collapse and recovery probabilities by the same
factor. The fraction of the stationary distribution in the prosperous state is proportional to the
recovery probability, 𝑝𝑟, i.e., the probability to enter the prosperous state from the degraed state.
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And vice versa, the fraction of the stationary distribution in the degraded state is proportional to the
collapse probability, 𝑝𝑐, i.e., the probability to enter the degraded state from the prosperous state.

Last, to compare this analyitical solution with the numerical calculation we insert the values for 𝑝𝑐
and 𝑝𝑟 into the analytical solution.

pstar_.subs(p_c, pc).subs(p_r, pr)

[0.166666666666667
0.833333333333333]

pstar

array([0.16666667, 0.83333333])

We observed the the statistical equilibrium in the Markov chain simulation and calculated the
long-run stationary distribution both numerically and symbolically. But what are the conditions
that such a unique statistical equilibrium exists?

5.4.3 Stationary distribution | Existence

Any Markov model with a finite set of states, fixed transition probabilities between them, the
potential to move from any state to any other in a series of transitions, and no fixed cycles
between states converges to a unique equilibrium. These are the conditions of the Perron-Frobenius
Theorem (Page, 2018).

Perron-Frobenius Theorem

A Markov process converges to a unique statistical equilibrium provided it satisfies four
conditions:

• Finite set of states: 𝒮 = 𝑆1, 𝑆2, … , 𝑆𝑍.
• Fixed transition rule: The probabilities of moving between states are fixed, for

example, the probability of transitioning from state 𝑆𝑖 to state 𝑆𝑗 equals 𝑇 (𝑆𝑖, 𝑆𝑗) in
every period.

• Ergodicity (state accessibility): The system can get from any state to any other
through a series of transitions.

• Noncyclic: The system does not produce a deterministic cycle through a sequence
of states.

The theorem implies that if those four assumptions are satisfied, the initial state, history, and
interventions that change the state cannot change the long-run equilibrium.

The unique statistical equilibrium implies that long-run distributions of outcomes cannot depend on
the initial state or on the path of events. In other words, initial conditions do not matter, and history
does not matter in the long run. Nor can interventions that change the state matter. Any one-time
change in the state of a system has at most a temporary effect.

For example,

• if nations move between dictatorships and democracies according to fixed probabilities, then
interventions that impose or encourage democracies in some countries have no long-term effects.
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• If fluctuations in dominant political ideologies satisfy the assumptions, then history cannot
influence the long-run distribution over ideologies.

• And if a person’s mental state can be represented as a Markov model, then words of encourage-
ment or supportive gestures have no long-run impact.

The takeaway from the theorem should not be that history cannot matter but that if history does
matter, one of the model’s assumptions must be violated.

Two assumptions—the finite number of states and no simple cycle—almost always hold.

Ergodicity can be violated. However, in practice, it is often possible to ensure ergodicity by adding
a tiny transition probability between states that are not directly connected. This tiny transition
probability can justified by our lack of knowledge about the system.

Thus, the assumption of fixed transition probabilities between states is the least likely to be
valid. When history is important, something must alter the transition probabilities.

For example, take the issue of assisting families in escaping poverty. The forces that create social
inequality have proven immune to policy interventions. In Markov models interventions that change
families’ states—such as special programs for underperforming students or a one-day food drive—can
provide temporary boosts. They cannot change the long-run equilibrium. In contrast, interventions
that provide resources and training that improve people’s ability to keep jobs, and therefore change
their probabilities of moving from employed to unemployed, could change long-run outcomes (Page,
2018).

We investigated the long-run behavior of the Markov chain model. But what about the short-term
behavior?

5.5 Transient behavior

We found that our example system’s statistical equilibirum, its stationary distribution, depends only
on the fraction of the collapse and recovery probabilities, 𝑝𝑐 and 𝑝𝑟.

To investigate the short-term behavior before the evolution of the state distribuion reaches its equli-
birum, we create different pairs of collapse and recovery probabilities while keeping their fraction
constant.

prs = np.array([0.1, 0.03, 0.01, 0.003, 0.001])
pcs = 5 * prs
pcs

array([0.5 , 0.15 , 0.05 , 0.015, 0.005])

We can insert these in the sympy matrix as follows,

np.array(T_.subs(p_c, pc).subs(p_r, pr), dtype=float)

array([[0.95, 0.05],
[0.01, 0.99]])
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5.5.1 Simulating different transition probabilities

It is convenient to define a function to obtain the time evolution for the state distributions.

def compute_distribution_trajectory(T): # Transition matrix
ps = [1, 0]
p_trajectory = []

for i in range(500):
ps = ps @ T
p_trajectory.append(ps)

return np.array(p_trajectory)

With that function, we simply compute the time evolution of the state distribution for the different
values of 𝑝𝑟 and 𝑝𝑐.

trajs = []
for pr, pc in zip(prs, pcs):

Tmat = np.array(T_.subs(p_c, pc).subs(p_r, pr), dtype=float)
trajs.append(compute_distribution_trajectory(Tmat))

np.array(trajs).shape

(5, 500, 2)

5.5.2 Visualizing distribution trajectories

for i, traj in enumerate(trajs):
plt.plot(traj[:, 0], ls='-', marker='.', label=prs[i])

plt.plot([0,500], [pstar[0], pstar[0]], '-', color='black')
plt.ylim(0, 1); plt.xlabel('Time steps'); plt.legend(title='Recovery probability');

The smaller the transition probabilities, the longer it takes to reach the stationary dis-
tribution.
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5.6 Timescales

Sometimes, it can be interesting or adquate to think about the typical timescales of a system. For
example, consider the typical timescale it takes a system to tip into another state. How can we
identify the notion of timescale in a Markov chain?

Let us identify a notion of timescale as the average number of time steps spend in a particular
state before a transition occurs. How can we calculate it?

We will first compute these timescales numerically, showcasing somewhat more advanced maniumpla-
tion using Python. Then we turn to an analytical formula and compare the results.

5.6.1 Numerical computation

To investigate this question nummerically, we re-create a (long) trajectory of states.

state = 0
pc = 0.2
pr = 0.04
T = np.array(T_.subs(p_c, pc).subs(p_r, pr), dtype=float)
trajectory = []
for i in range(500000):

state = np.random.choice([0,1], p=T[state])
trajectory.append(state)

trajectory = np.array(trajectory)

Looking at the first 100 states

shorttraj = trajectory[:99]
shorttraj

array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

How do we obtain the lengths of the 0 and 1 sequences?

We can subtract the trajectory by itsel with an offset of one time step. For the first 100 time steps,
this looks like

shorttraj[0:-1] - shorttraj[1:]

array([-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0])
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With np.nonzero with obtain the ‘cutpoints’ where the states change,

cutpoint = np.nonzero(trajectory[0:-1] - trajectory[1:])
cutpoint

(array([ 0, 19, 26, ..., 499904, 499960, 499985]),)

With np.diff, we obtain the differences between the cutpoints. These are the lengths of the se-
quences.

lengths = np.diff(cutpoint)
lengths

array([[19, 7, 22, ..., 10, 56, 25]])

The lengths of the prosperous states are in the odd elements of the lengths iterable. Taking the
average yields

length_prosperous = np.mean(lengths[0][1::2])
length_prosperous

4.982404866992724

The lengths of the degraded states are in the even elements of the lengths iterable. Taking the
average yields

length_degraded = np.mean(lengths[0][0::2])
length_degraded

24.838959799594416

5.6.2 Analytical computation

The average number of time steps 𝑇 it takes until a transition occurs, given a transition probability
𝑝, is

𝑇 =
∞

∑
𝑛=0

𝑛(1 − 𝑝)𝑛−1𝑝 = 1
𝑝 .

For a sequence of length 𝑛 it took 𝑛 − 1 time steps to remain in state 𝑠 before the transition. The
probability of remaining in state 𝑠 for 𝑛 − 1 time steps is (1 − 𝑝)𝑛−1. At the 𝑛’th time step, the
transition occurs with probability 𝑝.
This is the expected value of a geometric random variable with parameter 𝑝. The number of steps
𝑇 spent in state 𝑠 before a transition occurs can be thought of as the number of trials until the first
success in a sequence of Bernoulli trials, where each trial has a success probability of 𝑝 of transitioning
out of 𝑠. In probability theory, the number of trials required to get the first success in such a situation
is described by a geometric random variable. It expected value is 𝔼[𝑇 ] = 1/𝑝.
For the prosperous state, we have
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1/pc

5.0

compared to our numerical estimate

length_prosperous

4.982404866992724

For the degraded state, we have

1/pr

25.0

compared to our numerical estimate

length_degraded

24.838959799594416

Thus, the average number of time steps before a transition occurs equals the inverse transition prob-
ability 1/𝑝. This gives us an indication of the typical timescale of the system.

5.6.3 Example | Regime shifts timescales

Typical collapse and recovery timescales of regime shifts from the Regime Shifts Database have been
mapped to the transition probabilities of a Markov chain in this way (Barfuss, Donges, et al., 2024)
(Figure 5.5).

Figure 5.5: Timescales
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5.7 Learning goals revisited

• We introduced the components of a Markov chain model and covered how the model relates to
gernal dynamic system models to place this model in the context of integrated nature-society
models.

• We simulated and visualized Markov chain models in multiple ways: stochastically, with ensem-
bles, and via its state distribution to understand how the model behaves.

• We computed the stationary distribution of a Markov chain model numerically, analytically and
explain the conditions for its existence to understand the long-term behavior of the model.

• We investigated the transient behavior of a Markov chain model to understand the short-term
behavior of the model.

• We computed the typical timesacle of a Marko chain transition to relate the model to real-world
systems.
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Part II

Target Equilibria
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In this part, we cover target-equilibria models or equilibrium-based models. They operationalize
target knowledge, which is knowledge about the desired future and the values that indicate which
direction to take. It relies on deliberation by different societal actors and is based on values and norms.
In sustainability transitions, ways of producing target knowledge include participatory vision, scenario
development with a wide range of stakeholders, and the public discourse at large. Target knowledge
is strongly associated with values and asks what ought to be?.

Figure 5.6: Three types of models based on three types of knowledge for transdisciplinary reserach

Target-equilibrium (or equilibrium-based models applied to sustainability transitions) are primarily
used in economics. The overarching idea of the model type is to find a target equilibrium, a state
of the system that is considered desirable. In contrast to the dynamic systems models, target
equilibrium models introduce at least one decision-maker into the model. Given our assumptions
about how the world works and that we can precisely specify what we want, we can use optimization
techniques to find the best possible course of action. Having found the best course of action, we
are in a ‘target equilibrium.’

The decision-maker is sometimes called an agent or actor. It can be a single individual or a group of
individuals, such as a household, a company, a government, or a non-governmental organization. It
can be a human, an animal, or a machine. It may even be conceivable that a single human consists
of multiple agents. Thus, when introducing the concept of an agent, we obtain an abstract
but flexible modeling tool to represent the agency and decision-making of a wide range of
possible entities.

Specifically, we will cover

• Sequential decisions of a single agent in a dynamic environment in Chapter 03.01
• Strategic interactions of multiple agents in a static environment in Chapter 03.02, and
• Dynamic interactions of multiple agents in a dynamic environment in Chapter 03.03.
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6 Sequential Decisions

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

6.1 Motivation | Sequential decision-making under uncertainty

We will introduce the model framework of Markov Decision Processes (MDPs) to model sequen-
tial decision-making under uncertainty. MDPs are a powerful tool to model decision-making processes
in various applications, such as robotics, finance, and environmental management.

MDPs highlight the trade-off between current and future wellbeing in the presence of
uncertainty.

• Markov Decision Processes (MDPs) are models for sequential decision-making when outcomes
are uncertain.

• They extend Markov Chains by a single agent, executing an action at each time step, trying to
optimize its long-term wellbeing.

6.1.1 Applications in human-environment interactions

MDPs are widely used in environmental management and conservation biology to model the trade-off
between current and future wellbeing in the presence of uncertainty (Marescot et al., 2013; Williams,
2009). Application areas cover the whole spectrum of natural resource ecology, management,
and conservation, including

• forestry and forest management
• fisheries and aquatic management
• wildlife and range management
• weeds, pest, and disease control

In ecology, the term stochastic dynamic programming (SDP) is often used to refer to both the mathe-
matical model (MDP) and its solution techniques (SDP per see).

6.1.2 Advantages of Markov decision processes

Using MDPs to model human-environment interactions has several advantages:

• inherently stochastic - to account for uncertainty
• nonlinear - to account for structural changes
• agency - to account for human behavior
• future-looking - to account for the trade-off between short-term and long-term
• feedback - between one agent and the environment
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In addition to these structural advantages, MDPs can also be solved in a computationally efficient way
using a variety of algorithms, such as dynamic programming and reinforcement learning. This makes
them also a scalable modeling framework. However, as our focus lies on transparent analysis
and interpretation, we will focus on minimalistic models and won’t cover the computational
aspects. But in principle, MDPs can be used to model high-dimensional systems with many states
and actions.

6.1.3 Learning goals

After this lecture, students will be able to:

• Describe the elements of a Markov Decision Process (MDP) and how they relate to applications
in human-environment interactions

• Simulate and visualize the time-evolution of an MDP
• Explain what value functions are, why they are useful, and how to relate to the agent’s goal

and Bellman equation.
• Compute value functions and visualize the best policy in simple MDPs

6.2 Markov Decision Processes (MDPs)

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive, fixed

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

Graphically, a Markov decision process can be represented by the agent-environment interface in
Figure 6.1.

Figure 6.1: Agent-Environment Interface

Formally, we define a Markov Decision process by the following elements:
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• A discrete-time variable 𝑡 = 0, 1, 2, …
• A discrete set of contexts or states 𝒮 = {𝑆1, … , 𝑆𝑍}.
• A discrete set of options or actions 𝒜 = {𝐴1, … , 𝐴𝑀}.
• A transition function 𝑇 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1].

– 𝑇 (𝑠, 𝑎, 𝑠′) is the transition probability from current state 𝑠 to the next state 𝑠′ under action
𝑎.

• A welfare or reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ.
– 𝑅(𝑠, 𝑎, 𝑠′) is the current/immediate/short-term reward the agent receives when executing

action 𝑎 in state 𝑠 and transitioning to state 𝑠′.

• The agent’s goal or gain function 𝐺, including a discount factor 𝛾 ∈ [0, 1), denoting how much
the agent cares for future rewards

• The agent’s policy or strategy 𝑥 ∶ 𝒮 × 𝒜 → [0, 1].

6.2.1 Example model overview

We will illustrate the concept of MDPs using a simple example (Barfuss et al., 2018), modeling the
trade-off between short-term gains and environmental collapse with long-term consequences for the
decision-maker’s wellbeing.

Figure 6.2: Risk-reward dilemma

6.2.2 States and actions

The environment consists of two states, 𝒮 = {p, d}, representing a prosperous and a degraded state
of the environment.

state_set = ['prosperous', 'degraded']; p=0; d=1

We also defined two Python variable p=0 and d=1 to serves as readable and memorable indices to
represent the environmental contexts.

The agent can choose between two actions, 𝒜 = {f, r}, representing a safe and a risky decision.

action_set = ['safe', 'risky']; f=0; r=1
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Likewise, we define two Python variables, f=0 and r=1, to serve as readable and memorable indices
to represent the agent’s actions. We represent the safe action with the f instead of the s to avoid
confusion with the state s.

6.2.3 Transitions | Environmental dynamics

The environmental dynamics, i.e., the transitions between environmental state contexts are mod-
eled by two parameters, a collapse probability, 𝑝𝑐, and a recovery probability, 𝑝𝑟.

Let’s assume the following default values,

pc = 0.05
pr = 0.025

We implement the transitions as a three-dimensional array or tensors, with dimensions 𝑍 × 𝑀 × 𝑍,
where 𝑍 is the number of states and 𝑀 is the number of actions.

T = np.zeros((2,2,2))

The cautious action guarantees to remain in the prosperous state, 𝑇 (p, f, p) = 1. Thus, the agent can
avoid the risk of environmental collapse by choosing the cautious action, 𝑇 (p, f, d) = 0.

T[p,f,d] = 0
T[p,f,p] = 1

The risky action risks the collapse to the degraded state, 𝑇 (p, r, d) = 𝑝𝑐, with a collapse probability 𝑝𝑐.
Thus, with probability 1 − 𝑝𝑐, the environment remains prosperous under the risky action, 𝑇 (p, r, p) =
1 − 𝑝𝑐.

T[p,r,d] = pc
T[p,r,p] = 1-pc

At the degraded state, recovery is only possible through the cautious action, 𝑇 (d, f, p) = 𝑝𝑟, with
recovery probability 𝑝𝑟. Thus, with probability 1 − 𝑝𝑟, the environment remains degraded under the
cautious action, 𝑇 (d, f, d) = 1 − 𝑝𝑟.

T[d,f,p] = pr
T[d,f,d] = 1-pr

Finally, the risky action at the degraded state guarantees a lock-in in the degraded state, 𝑇 (d, r, d) = 1.
Thus, the environment cannot recover from the degraded state under the risky action, 𝑇 (d, r, p) = 0.

T[d,r,p] = 0
T[d,r,d] = 1

Last, we make sure that our transition tensor is normalized, i.e., the sum of all transition probabilities
from a state-action pair to all possible next states equals one, ∑𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′) = 1.
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assert np.allclose(T.sum(-1), 1.0)

All together, the transition tensor looks as follows:

T

array([[[1. , 0. ],
[0.95 , 0.05 ]],

[[0.025, 0.975],
[0. , 1. ]]])

6.2.4 Rewards | Short-term welfare

The rewards or welfare the agent receives represent the ecosystem services the environment provides.
It is modeled by three parameters: a safe reward 𝑟𝑠, a risky reward 𝑟𝑟 > 𝑟𝑠, and a degraded reward
𝑟𝑑 < 𝑟𝑠. We assume the following default values,

rs = 0.8
rr = 1.0
rd = 0.0

As the transition, we implement the rewards as a three-dimensional array or tensor, with dimensions
𝑍 × 𝑀 × 𝑍, where 𝑍 is the number of states and 𝑀 is the number of actions.

R = np.zeros((2,2,2))

The cautious action at the prosperous state guarantees the safe reward, 𝑅(p, f, p) = 𝑟𝑠,

R[p,f,p] = rs

The risky action at the prosperous leads to the risky reward if the environment does not collapse,
𝑅(p, r, p) = 𝑟𝑟,

R[p,r,p] = rr

Yet, whenever the environment enters, remains, or leaves the degraded state, it provides only the
degraded reward 𝑅(d, ∶, ∶) = 𝑅(∶, ∶, d) = 𝑟𝑑, where ∶ denotes all possible states and actions.

R[d,:,:] = R[:,:,d] = rd

Together, the reward tensor looks as follows:

R

array([[[0.8, 0. ],
[1. , 0. ]],

[[0. , 0. ],
[0. , 0. ]]])
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6.2.5 Policy

For now, we have not contemplated how the agent should behave. Therefore, to understand how
transitions, rewards, and policies are related, let us simulate the MDP using a random policy.

We will implement a policy as a two-dimensional array or tensor, with dimensions 𝑍 × 𝑀 , where 𝑍
is the number of states and 𝑀 is the number of actions.

X = np.random.rand(2,2) # random values between 0 and 1

A policy has to be a probability distribution over actions for each state, ∑𝑎 𝑋(𝑠, 𝑎) = 1. To ensure
this, we normalize the policy tensor,

X = X / X.sum(axis=-1, keepdims=True)

and test, if the policy is a valid probability distribution by asserting that the sum of all probabilities
over actions is equal to one,

assert np.allclose(X.sum(-1), 1.0)

Together, the policy tensor looks as follows:

X

array([[0.32878922, 0.67121078],
[0.9813571 , 0.0186429 ]])

We convert this logic into a Python function, that returns a random policy for a given number of
states and actions,

def random_policy(Z=2, M=2):
X = np.random.rand(Z,M) # random values
X = X/X.sum(axis=-1, keepdims=True) # normalize values, such that
assert np.allclose(X.sum(-1), 1.0) # X is a proper probability distribution
return X

For example, a random policy for our example MDP with two states and two actions looks as follows:

np.random.seed(42)
random_policy(M=2, Z=2)

array([[0.28261752, 0.71738248],
[0.55010153, 0.44989847]])

This completes all definitions required for an MDP. We can now simulate the MDP by iterating over
time steps and applying the policy to the current state.
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6.3 Simulation

6.3.1 Stochastic simulation

As in the case of Markov chains, we can simulate the MDP by drawing random numbers. We draw
the actions according to the policy and the next state according to the transition probabilities. The
reward is then a result of the current state, the current action, and the next state. We implement this
as a Python function that takes the transition tensor, the reward tensor, the policy tensor, the initial
state, and the number of time steps as input arguments.

def simulate_markov_decision_process(TransitionTensor, RewardTensor, Policy,
InitialState, NrTimeSteps):↪

state_trajectory = []
reward_trajectory = []
state = InitialState

for t in range(0, NrTimeSteps):
# Choose random action according to policy:
action = np.random.choice([f, r], p=Policy[state])
# Transition to new state:
state_ = np.random.choice([p, d], p=TransitionTensor[state][action])
# Record reward:
reward = RewardTensor[state, action, state_]
# Update state:
state = state_
# Store in trajectories
state_trajectory.append(state);
reward_trajectory.append(reward)

return np.array(state_trajectory), np.array(reward_trajectory)

We execute the simulation and visualize the time-evolution of the MDP’s environmental state and
agent’s rewards.

np.random.seed(1818)
state_trajectory, reward_trajectory = simulate_markov_decision_process(T, R, X, 0,

500)↪

fig, axes = plt.subplots(2,1)
axes[0].plot(1-np.array(state_trajectory), ls='-', marker='.', color='Darkblue')
axes[1].plot(reward_trajectory, color='Red'); axes[0].set_ylabel('Environment');

axes[1].set_ylabel('Rewards'); axes[1].set_xlabel('Time steps');
plt.tight_layout();

↪

↪
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We observe the same stochastic nature of the simulation as with Markov chains. Furthermore, the
agent’s rewards fluctuate over time, depending on the environmental state and the agent’s actions.
The agent’s rewards are higher in the prosperous state and lower in the degraded state.

Can we make sense of the stochasticity by computing averages over many simulations?

6.3.2 Ensemble simulation

Let’s repeat the previous simulation to create an ensemble of stochastic simulation runs. Let’s
assume we want an ensemble of 250 runs.

state_ensemble = []
reward_ensemble = []
for _ in range(250):

state = 0
state_trajectory, reward_trajectory =\

simulate_markov_decision_process(T, R, X, 0, 500)
state_ensemble.append(state_trajectory)
reward_ensemble.append(reward_trajectory)

state_ensemble = np.array(state_ensemble)
reward_ensemble = np.array(reward_ensemble)

It is always a good idea to investigate the object one has just created for consistency, for instance,
checking the shape of the ensemble.

print(state_ensemble.shape, reward_ensemble.shape)

(250, 500) (250, 500)

For each ensembel, the first dimension of the ensemble is the number of runs, the second dimension is
the number of time steps.

Visualizing the ensemble by takeing the mean over the first dimension (using ensemble.mean(axis=0)),

fig, axes = plt.subplots(2,1)
axes[0].plot(1-state_ensemble.mean(0), ls='-', marker='.', color='Darkblue')
axes[1].plot(reward_ensemble.mean(0), color='Red');
axes[0].set_ylabel('Environment'); axes[1].set_ylabel('Rewards');
axes[0].set_ylim(-0.1,1.1); axes[1].set_ylim(-0.1,1.1); axes[1].set_xlabel('Time

steps');↪
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plt.tight_layout();

Figure 6.3

Figure 6.3 shows the ensemble average of the environmental state and the agent’s rewards over time.
The ensemble average is smoother than the individual runs, indicating that the stochasticity averages
out over many runs. This observation suggests that we can work with the MDP in the same way as a
Markov chain, simulating the time evolution of the state distribution directly.

6.3.3 Distribution trajectory

We realize that the MDP’s transition tensor can be reduced to a Markov Chain’s transition matrix
when we fix the agent’s policy:

𝑇x(𝑠, 𝑠′) ∶= ∑
𝑎∈𝒜

𝑥(𝑠, 𝑎)𝑇 (𝑠, 𝑎, 𝑠′)

In Python, we use the einsum function for that, since it gives us full control over which indices we
want to execute the summation:

s, a, s_ = 0, 1, 2
Tss = np.einsum(X, [s,a], # first object with indices

T, [s,a,s_], # second object with indices
[s,s_]) # indices of the output

Tss

array([[0.96643946, 0.03356054],
[0.02453393, 0.97546607]])

With the effective Markov chain transition matrix, we use the matrix update derived in 02.04-
StateTransitions to simulate how the state distribution evolves.

ps = [1, 0]
p_trajectory = []
for i in range(500):

ps = ps @ Tss
p_trajectory.append(ps)

p_trajectory = np.array(p_trajectory)
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The trajectory of the state distribution has the number of time steps as the first dimension and the
number of states as the second dimension.

p_trajectory.shape

(500, 2)

Visualizing the state distribution evolution together with the ensemble average reveals a close resembles
between the two.

plt.plot(1-state_ensemble.mean(0), ls='-', marker='.', color='Darkblue',
label='Ensemble average')↪

plt.plot(p_trajectory[:, 0], ls='-', marker='.', color='blue', label='State
distribution')↪

plt.xlabel('Time steps $t$'); plt.ylabel('Average system state $s$'); plt.legend();

To compute the average reward trajectory over time, we use the same logic as for the state distribution
trajectory, 𝑝𝑡(𝑠). We compute the reward distribution by summing over the state dimension, weighted
by the state distribution,

⟨𝑅𝑡⟩x = 𝔼x[𝑟𝑡] = ∑
𝑠∈𝒮

∑
𝑎∈𝒜

∑
𝑠′∈𝒮

𝑝𝑡(𝑠)𝑥(𝑠, 𝑎)𝑇 (𝑠, 𝑎, 𝑠′)𝑅(𝑠, 𝑎, 𝑠′),

where 𝔼x[⋅] denotes the expected value of a random variable ⋅ given the agent follows policy x.

You see how, in this equation on the right hand side, the information flows from the left to the right.
The state distribution 𝑝𝑡(𝑠) is multiplied with the policy 𝑥(𝑠, 𝑎) to get the probability of taking action
𝑎. This probability is then multiplied with the transition probability 𝑇 (𝑠, 𝑎, 𝑠′) to get the probability
of transitioning to state 𝑠′. Finally, this probability is multiplied with the reward 𝑅(𝑠, 𝑎, 𝑠′) to get the
expected reward.

We use the einsum function to convert this logic into Python,
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s, a, s_, t = 0, 1, 2, 3
r = np.einsum(p_trajectory, [t, s],

X, [s,a],
R, [s,a,s_],
T, [s,a,s_],
[t]) # output only in time dimension

We check that the average-reward trajectory is only a one-dimensional array, with the number of
timesteps as the first dimension.

r.shape

(500,)

Visualizing the average-reward distribution evolution together with the ensemble average reveals a
close resemblance between the two.

plt.plot(reward_ensemble.mean(0), color='Red', label='Ensemble average');
plt.plot(r, ls='-', marker='.', color='pink', label='Average rewards');
plt.xlabel('Timesteps $t$'); plt.ylabel('Rewards $R$'); plt.legend();

Thus, we can also calculate the stationary distribution of an MDP given a policy x in the same way
as for a Markov chain.

6.4 Goals and values

In the Markov Decision Process framework, the agent’s purpose or goal is formalized within the
reward signal, flowing from the environment to the agent (Sutton & Barto, 2018). At each time step,
the agent the reward is represented by a single number 𝑅𝑡 ∈ ℝ. Informally, the agent’s goal is to
maximize the total amount of reward it receives over time. This may entail choosing actions that
yield less immediate rewards to get more rewards in the future.

Representing the agent’s goal by a series of single numbers might seem limiting. However, in practice,
it has proven itself flexible and widely applicable. It also aligns well with the unidimensional concepts
of utility in economics (Schultz et al., 2017) and fitness in biological or cultural evolution.
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6.4.1 Goal functions

How do we translate our informal definition of the agent’s goal as maximizing the total amount of
reward into a formal mathematical equation?

Finite-horizon goal. The simplest case for a goal function 𝐺𝑡 is to sum up all rewards the agent
receives from timestep 𝑡 onwards until the final time step 𝑇 ,

𝐺𝑡 ∶= 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇 =
𝑇

∑
𝜏=𝑡+1

𝑅𝜏 .

This definition makes sense only if we have a clearly defined final state, such as the end of a board
game, the completion of an individual project, or the end of an individual’s life. However, in human-
environment interaction in the context of sustainability transitions, we are interested in the long-term
future without a clear final state. In these cases, we cannot use the goal definition from above as with
𝑇 = ∞, the sum 𝐺𝑡 itself could easily be infinite for multiple reward sequences, which would leave the
agent without guidance on which reward sequence yields a higher 𝐺𝑡 and, hence, what to do.

For example, on average, our ensemble of stochastic simulations yields a total finite-horizon gain of

reward_ensemble.sum(axis=1).mean()

197.87679999999997

Discounted goal. We solve this problem of diverging gains 𝐺𝑡 with the concept of temporal
discounting. We revise our informal definition of the agent’s goal: The agent tries to select actions
to maximize the sum of discounted future rewards (Sutton & Barto, 2018). The goal function then
becomes,

𝐺𝑡 ∶= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ =
∞

∑
𝜏=𝑡

𝛾𝜏𝑅𝑡+𝜏+1,

where 𝛾 ∈ [0, 1) is the discount factor. The discount factor determines how much the agent cares
about future rewards. A discount factor of 𝛾 = 0 means that the agent only cares about the immediate
reward, while as the discount factor approaches 𝛾 → 1, the agent takes future rewards into account
more strongly and becomes more farsighted.

For example, the discounted gain with a discount factor of 𝛾 = 0.9 of the last ensemble run is

np.sum([0.9**t * reward_ensemble[-1, t] for t in range(500)])

9.254059133343878

Temporal discounting is a widely used concept in (environmental) economics, psychology, and neuro-
science to model human decision-making. It implies that welfare experienced in the future is worth
less to the agent than the same amount of welfare experienced now. This concept is used both as a
normative and descriptive model of decision-making.

One reason for temporal discounting is the uncertainty about the future. The future is uncertain,
and the agent might not be around to experience future rewards. In fact, 𝛾 can be interpreted as the
probability that the agent will be around to experience future rewards.
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The primary value of temporal discounting and the discount factor for us in our quest to develop
integrated system models of human-environment interactions is its ability to model the trade-
off between present and future welfare. This trade-off is at the heart of many sustainability
transitions, such as the trade-off between short-term economic gains and long-term environmental
degradation.

For example, let’s assume the agent receives a constant reward stream of 𝑅𝑡 = 1 for all timesteps 𝑡.
We compare the so-called (net) present value at timestep 𝑡 for different discount factors 𝛾. We also
compute the sum of the discounted rewards for the infinite future, 𝐺𝑡.

for discountfactor in [0.1, 0.5, 0.9, 0.99]:
summands = [discountfactor**t for t in range(10000)]
plt.plot(summands, label=discountfactor)

total_value = np.sum(summands)
print("Discount factor {dcf:3.2f}: Total {total:5.1f}"\

.format(dcf=discountfactor, total=total_value))

plt.legend(); plt.ylabel('Present value'); plt.xlabel('Timestep');
plt.xlim(0,100);

Discount factor 0.10: Total 1.1
Discount factor 0.50: Total 2.0
Discount factor 0.90: Total 10.0
Discount factor 0.99: Total 100.0

Figure 6.4

Here, we used the Python string method format to print the results in a readable way. It can be
used to insert variables into a string. The curly brackets {} are placeholders for the variables, and
the variables are passed to the format method as arguments. The colon : inside the curly brackets is
used to format the output. For example, :3.2f formats the number as a floating-point number with
three digits before and two digits after the decimal point.

Normalized goal. To account for the fact that the total value depends on the level of discounting,
even if the reward stream is constant, we can normalize the goal as follows,
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𝐺𝑡 = (1 − 𝛾)
∞

∑
𝜏=𝑡

𝛾𝜏𝑅𝑡+𝜏+1,

where 1 − 𝛾 is a normalizing factor and 𝑅𝑡+𝜏+1 is the reward received at time step 𝑡 + 𝜏 + 1.

for dcf in [0.1, 0.5, 0.9, 0.99]:
summands = [dcf**t for t in range(10000)]
normalizing = 1-dcf
total_value = normalizing * np.sum(summands)
print("Discount factor {dcf:3.2f}: Total {total:5.1f}".format(dcf=dcf,

total=total_value))↪

Discount factor 0.10: Total 1.0
Discount factor 0.50: Total 1.0
Discount factor 0.90: Total 1.0
Discount factor 0.99: Total 1.0

With normalization, the discount factor parameter 𝛾 expresses how much the agent cares for the
future without influencing the scale of the total value. That way, the outcomes of different discount
factors can be compared with each other.

For example, the normalized discounted gain with a discount factor of 𝛾 = 0.9 of the last ensemble
run is

dcf = 0.9
(1-dcf) * np.sum([dcf**t * reward_ensemble[-1, t] for t in range(500)])

0.9254059133343876

Bellman equation. Regardless of the goal formulation, the agent’s gains 𝐺𝑡 at successive time steps
relate to each other in an important way:

𝐺𝑡 = (1 − 𝛾)
∞

∑
𝜏=𝑡

𝛾𝜏𝑅𝑡+𝜏+1 (6.1)

= (1 − 𝛾) (𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 ⋯) (6.2)
= (1 − 𝛾) (𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾2𝑅𝑡+4 ⋯)) (6.3)
= (1 − 𝛾)𝑅𝑡+1 + 𝛾(1 − 𝛾)(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾2𝑅𝑡+4 ⋯) (6.4)
= (1 − 𝛾)𝑅𝑡+1 + 𝛾𝐺𝑡+1, (6.5)

The gain 𝐺𝑡 is composed of the current short-term reward and the (discounted) value of the future
gains. This recursive relationship is known as the Bellman equation and is the foundation of many
solution methods for MDPs, such as dynamic programming and reinforcement learning.

For example, we can test the Bellman equation by comparing the gain at time step 𝑡 with the short-
term reward at time step 𝑡 and the gain at time step 𝑡 + 1.
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dcf = 0.9
G0 = (1-dcf) * np.sum([dcf**t * reward_ensemble[-1, t] for t in range(0, 500)])
G1 = (1-dcf) * np.sum([dcf**t * reward_ensemble[-1, t+1] for t in range(0, 499)])

np.allclose((1-dcf) * reward_ensemble[-1, 0] + dcf * G1, G0)

True

Why does that work even though we have a finite time horizon of 500 simulation timesteps here? From
Figure 6.4 we observe that for a discount factor 𝛾 = 0.9, the contributions of rewards for timesteps
above 𝑡 > 100 are practically zero. So, with a simulation time of 500 timesteps, we are well above
the time horizon the agent cares about. This example illustrates not only the power of the Bellman
equation. It also shows how a discount factor induces a timescale the agent cares about.

Goals or gains are defined over individual reward streams or trajectories. These may be stochastic
beyond the agent’s control. Therefore, the agent’s course of action should consider the expected
gains, i.e., the average gains over all possible reward streams, given a policy x.

6.4.2 Value functions

Value functions are defined to be the expected gain 𝐺𝑡 for a policy x, given a state or
state-action pair. They are helpful in finding a good policy since the best policy will yield the
highest value.

Given a policy x, we define the state value, 𝑣x(𝑠), as the expected gain, 𝔼x[𝐺𝑡|𝑆𝑡 = 𝑠], when starting
in state 𝑠 and the following the policy x,

𝑣x(𝑠) ∶= 𝔼x[𝐺𝑡|𝑆𝑡 = 𝑠] = (1 − 𝛾)𝔼x [
∞

∑
𝜏=𝑡

𝛾𝜏𝑅𝑡+𝜏+1|𝑆𝑡 = 𝑠] , for all 𝑠 ∈ 𝒮,

Analogously, we define the state-action value, 𝑞x(𝑠, 𝑎), as the expected gain when starting in state
𝑠 and executing action 𝑎, and from then on following policy x,

𝑞x(𝑠, 𝑎) ∶= 𝔼𝑋[𝐺(𝑡)|𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎].

𝑞x(𝑠, 𝑎) ∶= 𝔼x[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = (1 − 𝛾)𝔼x [
∞

∑
𝜏=𝑡

𝛾𝜏𝑅𝑡+𝜏+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , for all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜.

How is that useful?

1) State values let us compare strategies. A strategy x is better than a strategy y iff for all
states 𝑠: 𝑣x(𝑠) > 𝑣y(𝑠).

2) The best strategy yields the highest value. At least one strategy is always better than
or equal to all other strategies. That is an optimal strategy x∗ with the optimal state value
𝑣∗(𝑠) ∶= maxx 𝑣x(𝑠), ∀𝑠.

3) Highest state-action values indicate the best action. If we knew the optimal state-action
value, 𝑞∗(𝑠, 𝑎) ∶= maxx 𝑞x(𝑠, 𝑎), ∀𝑠, 𝑎, we can simply assign nonzero probability at each state 𝑠
only to actions which yield maximum value, max�̃� 𝑞∗(𝑠, ̃𝑎).
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The beauty of state(-action) values, in general, and optimal state(-action) values, in particular,
is that they encapsulate all relevant information about future environmental dynamics
with all inherent stochasticity into short-term actionable numbers. Relevant means relevant to
the agent regarding its goal function. State-action values represent the short-term consequences of
actions in each state regarding the long-term goal. Optimal state-action values allow for selecting the
best actions, irrespective of knowing potential successor states and their values or any details about
environmental dynamics. Having such values would save the agent enormous cognitive computational
demands every time it must make a decision.

The only problem we are left with is, how to compute a policy’s state(-action) values?

6.4.3 Bellman equation

We convert the recursive relationship of the goal function (?@eq-bellman1) to state values,

𝑣x(𝑠) = 𝔼x[𝐺𝑡|𝑆𝑡 = 𝑠] (6.6)
= 𝔼x [(1 − 𝛾)𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] (6.7)
= (1 − 𝛾)𝔼x[𝑅𝑡+1|𝑆𝑡 = 𝑠] + 𝛾𝔼x[𝐺𝑡+1|𝑆𝑡+1 = 𝑠′] (6.8)
= (1 − 𝛾)𝑅x(𝑠) + 𝛾 ∑

𝑠′
𝑇x(𝑠, 𝑠′)𝑣x(𝑠′), (6.9)

where 𝑅x(𝑠) is the expected reward in state 𝑠 under policy x and 𝑇x(𝑠, 𝑠′) is the expected transition
probability from state 𝑠 to state 𝑠′ under policy x.

The expected state reward 𝑅x(𝑠) is given by

𝑅x(𝑠) = ∑
𝑎∈𝒜

∑
𝑠′∈𝒮

𝑥(𝑠, 𝑎)𝑇 (𝑠, 𝑎, 𝑠′)𝑅(𝑠, 𝑎, 𝑠′),

which can be neatly translated into Python using the numpy.einsum method.

s, a, s_ = 0, 1, 2 # defining indices for convenicence
Rs = np.einsum(X, [s, a], T, [s, a, s_], R, [s, a, s_], [s]); Rs

array([0.90068162, 0. ])

The recursive equation is called the Bellman equation in honor of Richard Bellman and his pioneering
work (Bellman 1957). The recursive relationship is exploited in several algorithmic ways to compute
the values or even approximate the optimal state values. In recent years, it became possible to
approximate optimal state values with deep neural networks, a technique known as deep reinforcement
learning (Mnih et al., 2015), allowing for solving high-dimensional MDPs with many - even infinitely
many - states and actions. This is a fascinating field of research, which we will not cover in this course.
I recommend the interested reader to start from the excellent (introduction to reinforcement learning
by Sutton & Barto, 2018).

Our focus lies on a transparent way of modeling human-environment interactions. We use MDPs
as a framework to improve our conceptual understanding of decision-making under uncertainty. Specif-
ically, we exemplify that with the trade-off between short-term and long-term welfare.

Using an MDP framework, our models are formulated in a way that - in principle - can scale to high-
dimensional systems. The trade-off is, however, the computational cost of solving high-dimensional
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MDPs. The more complex and “realistic” a model, the less we can understand how the outcome
depends on the model’s specifications.

As these model specifications are often highly uncertain in the context of sustainability and global
change (Polasky et al., 2011), it is very likely that we end up with an optimal policy for a
wrong model that is not useful for decision-making. It might even be harmful, conveying a false
sense of optimality. This problem gets worse with the complexity of the model. The more model
parameters we have to specify as the input to the model, the more sources of possible but unconscious
uncertainty there is.

Therefore, we will focus on minimalistic models but take a radical stance to account for parameter
uncertainty to keep the analysis and interpretation transparent. Thus, in the following, we derive an
analytical expression how to compute the state values for a given policy.

We write the Bellman equation in matrix form,

vx = (1 − 𝛾)Rx + 𝛾Txvx

where Rx is the vector of expected state rewards 𝑅x(𝑠), Tx is the transition matrix, and vx is the
vector of state values under policy x. Thus, vx and Rx are vectors of dimension 𝑍, i.e., the number
of states, and Tx is the transition matrix of dimension 𝑍 × 𝑍.

We can solve this equation for vx,

vx = (1 − 𝛾)Rx + 𝛾Txvx (6.10)
vx − 𝛾Txvx = (1 − 𝛾)Rx (6.11)

(𝟙𝑍 − 𝛾Tx)vx = (1 − 𝛾)Rx (6.12)
(𝟙𝑍 − 𝛾Tx)−1(𝟙𝑍 − 𝛾Tx)vx = (1 − 𝛾)(𝟙𝑍 − 𝛾Tx)−1Rx (6.13)

vx = (1 − 𝛾)(𝟙𝑍 − 𝛾Tx)−1Rx, (6.14)
(6.15)

where 𝟙𝑍 is the identity matrix of dimension 𝑍.

Thus, to compute state value, we must invert a 𝑍 × 𝑍-matrix, which is computationly infeasable for
large MDPs. For low-dimensional models, however, it works perfectly fine and can even be executed
analytically.

In Python, an identity matrix can be created with the eye function from the numpy package.

np.eye(2)

array([[1., 0.],
[0., 1.]])

We define a function to compute the state values given a policy, a transition tensor, a reward tensor,
and a discount factor. The function returns a vector of state values. We use the inv function from
the numpy.linalg package to invert the matrix.
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def compute_statevalues(
policy_Xsa, transitions_Tsas, rewards_Rsas, discountfactor):
s, a, s_ = 0, 1, 2 # defining indices for convenicence
Tss = np.einsum(policy_Xsa, [s, a], transitions_Tsas, [s, a, s_], [s,s_])
Rs = np.einsum(policy_Xsa, [s, a], transitions_Tsas, [s, a, s_],

rewards_Rsas, [s, a, s_], [s])
inv = np.linalg.inv((np.eye(2) - discountfactor*Tss))
Vs = (1-discountfactor) * np.einsum(inv, [s,s_], Rs, [s_], [s])
return Vs

Vs = compute_statevalues(X, T, R, 0.9); Vs

array([0.7220388 , 0.13059414])

Thus, in contrast to the expected state rewards, the long-term value of the degraded state is above
the immediate reward of the degraded state, 𝑟𝑑 = 0.

Rs

array([0.90068162, 0. ])

In the state value 𝑣x(d) of the degraded state, the agent anticipates the recovery of the environment
and the return to the prosperous state. Likewise, the agent anticipates the collapse of the environment
and the loss of the prosperous state in the state value of the prosperous state. Hence, 𝑣x(p) is smaller
than the expected reward of the prosperous state, 𝑅x(p). The expected state rewards only consider
the immediate possible transitions, while the state values also account for the long-term consequences
of these transitions.

How do these values depend on the discount factor 𝛾?

We define an array of linearly spaced values of different discount factors,

discountfactors = np.linspace(0.001, 0.9999, 301)

We then compute the state value for each discount-factor value using a list comprehension,

values = np.array([compute_statevalues(X, T, R, dcf) for dcf in discountfactors])
values.shape

(301, 2)

We plot the state values along the discount factors on the x-axis. We also include the expected state
rewards, which are independent of the discount factor.

plt.plot(discountfactors, Rs[0]*np.ones_like(discountfactors), label='$R(p)$',
c='green', ls='--');↪

plt.plot(discountfactors, values[:, 0], label='$v(p)$', c='green');
plt.plot(discountfactors, values[:, 1], label='$v(d)$', c='brown');
plt.plot(discountfactors, Rs[1]*np.ones_like(discountfactors), label='$R(d)$',

c='brown', ls='--');↪

plt.legend(); plt.xlabel('Discount factor'); plt.ylabel('Value')
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Text(0, 0.5, 'Value')

When the discount factor is close to zero, 𝛾 = 0, the values equal the average immediate rewards.

When the discount factor 𝛾 → 1, the state values for the prosperous and the degraded state approach
each other.

Last, the state values change more for large 𝛾 > 0.85 than for lower 𝛾.
So far, we investigated how to compute the state values for a given policy and use a random policy as
an example. To eventually answer what the agent should do, we must compare multiple policies and
find the best one.

6.5 Optimal policies

The key question of our example model is, when is it better to play safe, and when is it
better to be risky? From our model definition, we can easily see that, in the degraded state, it is
always better to play safe as this is the only way to recover to the more rewarding, prosperous state.
But what about the prosperous state?

6.5.1 Numerical computation

We define two policies, a safe policy, xsafe, where the agent always chooses the safe action and a risky
policy, xrisky, where the agent always chooses the risky action in the prosperous state.

Xsafe = np.array([[1,0],[1,0]])
Xrisk = np.array([[0,1],[1,0]])

For each of these policies, we compute the state values with our compute_statevalues function,

V_safe = np.array([compute_statevalues(Xsafe, T, R, dcf) for dcf in
discountfactors])↪

V_risk = np.array([compute_statevalues(Xrisk, T, R, dcf) for dcf in
discountfactors])↪

and plot these values for each policy and each state as
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plt.plot(discountfactors, V_safe[:, 0], label='$v_{safe}(p)$', color='blue');
plt.plot(discountfactors, V_safe[:, 1], label='$v_{safe}(d)$', color='blue',

lw=0.4);↪

plt.plot(discountfactors, V_risk[:, 0], label='$v_{risk}(p)$', color='red');
plt.plot(discountfactors, V_risk[:, 1], label='$v_{risk}(d)$', color='red', lw=0.4);
plt.legend(); plt.xlabel('Discount factor'); plt.ylabel('Value');

We find a critical discount factor ̂𝛾, where the optimal policy changes. Below ̂𝛾, the agent acts
optimally by choosing the risky policy. Above the critical discount factor, ̂𝛾, the agent acts optimally
by choosing the safe policy.

Hence, when the agent cares enough about the future, it is better to be safe than sorry, even if this
means giving up immediate, short-term welfare (𝑟𝑠 < 𝑟𝑟).

But how does this result depend on the other parameters, 𝑝𝑐, 𝑝𝑟, 𝑟𝑠, 𝑟𝑟, 𝑟𝑑?

This investigates how the optimal policy depends on all parameters of the model; we first define
general transition and reward functions that return a transition and reward tensor, given our
model parameters. We make these functions general by passing the most general datatype to the
respective numpy.arrays, i.e., dtype=object. This allows us to store arbitrary Python objects in the
arrays, such as float numbers or symbolic expressions.

def get_transitions(pc, pr):
c=0; r=1; p=0; d=1 # for reference we define these as function-local variables
T = np.zeros((2,2,2), dtype=object)
T[p,c,d] = 0 # Cautious action guarantees prosperous state
T[p,c,p] = 1 #
T[p,r,d] = pc; # Risky action risks collapse
T[p,r,p] = 1-T[p,r,d] # ... but collapse may not happen
T[d,c,p] = pr # Recovery only possible with cautious action
T[d,c,d] = 1-T[d,c,p] # ... but recovery might not happen
T[d,r,p] = 0 # Risky action remains at degraded state
T[d,r,d] = 1
return T

def get_rewards(rs, rr=1, rd=0):
c=0; r=1; p=0; d=1 # for reference we define these as function-local variables
R = np.zeros((2,2,2), dtype=object)
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R[p,c,p] = rs # The cautious action at the prosperous state
guarantees the safe reward↪

R[p,r,p] = rr # The risky action can yield the risky reward if the
environment remains at p↪

R[d,:,:] = R[:,:,d] = rd # Otherwise, the agent receives rd
return R

Now, we can create transition and reward tensors flexibly. As we want to perform numerical compu-
tations, we specify the data type of the arrays to be float numbers.

T = get_transitions(0.04, 0.1).astype(float)
T

array([[[1. , 0. ],
[0.96, 0.04]],

[[0.1 , 0.9 ],
[0. , 1. ]]])

R = get_rewards(0.7).astype(float)
R

array([[[0.7, 0. ],
[1. , 0. ]],

[[0. , 0. ],
[0. , 0. ]]])

Let’s assume we want to know how the critical discount factor ̂𝛾 depends on the collapse probability
𝑝𝑐 for a given recovery probability 𝑝𝑟 = 0.01 and safe reward 𝑟𝑠 = 0.8, a risky reward 𝑟𝑟 = 1.0 and a
degraded reward 𝑟𝑑 = 0.0. We define these quantities as

pr = 0.01
rs = 0.5
rr = 1.0
rd = 0.0

and let the discount factor and collapse probabilities run from almost zero to almost one with a
resolution of 301 elements,

discountfactors = np.linspace(0.0001, 0.9999, 301)
collapseprobabilities = np.linspace(0.0001, 0.9999, 301)

We will go through each combination of discount factors and collapse probabilities, compute the state
values for both policies, compare them, and store the result in a data container. We prepare this data
container by
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risky_optimal_data_container = np.zeros((discountfactors.size,
collapseprobabilities.size, 2))↪

Now, we are ready to execute our simulation. We loop through each discount factor and for each
discount factor through each collapse probability, obtain our new transition matrix, compute the state
values, and store them in our data container. The Jupyter cell magic %%time shows us how long it
took to execute that cell.

%%time
for i, dcf in enumerate(discountfactors):

for j, pc in enumerate(collapseprobabilities):
T = get_transitions(pc, pr).astype(float)
R = get_rewards(rs, rr, rd).astype(float)
Vs_risk = compute_statevalues(Xrisk, T, R, dcf)
Vs_safe = compute_statevalues(Xsafe, T, R, dcf)
risky_optimal_data_container[i, j, :] = Vs_risk > Vs_safe

CPU times: user 10.9 s, sys: 1.94 s, total: 12.8 s
Wall time: 8.7 s

We noticeably have to wait for the result!

plt.subplot(131); plt.xticks([]); plt.yticks([]);
plt.subplot(133); plt.xticks([]); plt.yticks([]);
plt.subplot(132) # just to center the plot in the middle

plt.pcolormesh(collapseprobabilities, discountfactors,
risky_optimal_data_container[:,:,0], cmap='bwr')

plt.ylabel('Discount factor'); plt.xlabel('Collapse probabiliy');

The higher the collapse probability, the lower the critical discount factor. When the collapse
is more likely, less future care is required to evaluate the safe policy as optimal. When the collapse
probability is zero (𝑝𝑐 = 0), the critical discount factor is one ( ̂𝛾 = 1), and the agent should always
choose the risky policy, as the environment cannot be destroyed.
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When the discount factor is zero (𝛾 = 0), the critical collapse probability is a half ̂𝑝𝑐 = 0.5. If an
environmental collapse under the risky action is more likely 𝑝𝑐 > ̂𝑝𝑐, the agent should always choose
the safe policy and vice versa. But where does the value 0.5 come from? Intuitively, it is the ratio
between the safe and the risky reward, 𝑟𝑠/𝑟𝑟.

But how can we be sure? And wouldn’t it be great, if we could speed up the computation time
somehow?

The solution to both questions lies in a symbolic computation of the critical parameter values
̂𝛾, ̂𝑝𝑐, ̂𝑝𝑟, ̂𝑟𝑠, ̂𝑟𝑟, ̂𝑟𝑑.

6.5.2 Symbolic computation

We define symbolic expressions for our model parameters and obtain the corresponding transition and
reward tensors,

pc, pr = sp.symbols("p_c, p_r")
T = sp.Array(get_transitions(pc, pr))
T

[[ 1 0
1 − 𝑝𝑐 𝑝𝑐

] [𝑝𝑟 1 − 𝑝𝑟
0 1 ]]

rs, rr, rd = sp.symbols("r_s r_r r_d")
R = sp.Array(get_rewards(rs, rr, rd))
R

[[𝑟𝑠 𝑟𝑑
𝑟𝑟 𝑟𝑑

] [𝑟𝑑 𝑟𝑑
𝑟𝑑 𝑟𝑑

]]

As before, we also define a risky and a safe policy, now as symbolic variables,

Xsafe = sp.Array([[1,0],[1,0]])
Xrisk = sp.Array([[0,1],[1,0]])

and also the discount factor as a symbolic variable

dcf = sp.symbols("gamma")
dcf

𝛾
Luckily, we only have to change our compute_statevalues slightly, (since the np.einsum function
also works with Sympy expressions)

def symbolic_statevalues(policy_Xsa, transitions_Tsas, rewards_Rsas,
discountfactor=dcf):↪

s, a, s_ = 0, 1, 2 # defining indices for convenicence
Tss = sp.Matrix(np.einsum(policy_Xsa, [s, a], transitions_Tsas, [s, a, s_],
[s,s_]))↪

Rs = sp.Array(np.einsum(policy_Xsa, [s, a], transitions_Tsas, [s, a, s_],
rewards_Rsas, [s, a, s_], [s]))↪
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inv = (sp.eye(2) - discountfactor*Tss).inv(); inv.simplify() # sp.simplify()
often helps↪

Vs = (1-discountfactor) * sp.Matrix(np.einsum(inv, [s,s_], Rs, [s_], [s]));
Vs.simplify()↪

return Vs

The symbolic expressions of the state values for the risky policy are

symbolic_statevalues(Xrisk, T, R)

[
𝛾𝑝𝑐𝑝𝑟𝑟𝑑−𝛾𝑝𝑐𝑝𝑟𝑟𝑟+𝛾𝑝𝑐𝑟𝑟+𝛾𝑝𝑟𝑟𝑟−𝛾𝑟𝑟+𝑝𝑐𝑟𝑑−𝑝𝑐𝑟𝑟+𝑟𝑟

𝛾𝑝𝑐+𝛾𝑝𝑟−𝛾+1
𝛾𝑝𝑐𝑝𝑟𝑟𝑑−𝛾𝑝𝑐𝑝𝑟𝑟𝑟+𝛾𝑝𝑐𝑟𝑑+𝛾𝑝𝑟𝑟𝑟−𝛾𝑟𝑑+𝑟𝑑

𝛾𝑝𝑐+𝛾𝑝𝑟−𝛾+1
]

and for the safe policy, are

symbolic_statevalues(Xsafe, T, R)

[ 𝑟𝑠𝛾𝑝𝑟𝑟𝑠−𝛾𝑟𝑑+𝑟𝑑
𝛾𝑝𝑟−𝛾+1

]

To check whether the risky policy is optimal, we subtract the value of the safe policy from the risky
policy’s value at the prosperous state 0.

risky_optimal = sp.simplify(symbolic_statevalues(Xrisk, T, R)[0])\
- sp.simplify(symbolic_statevalues(Xsafe, T, R)[0])

sp.simplify(risky_optimal)

𝛾𝑝𝑐𝑝𝑟𝑟𝑑 − 𝛾𝑝𝑐𝑝𝑟𝑟𝑟 + 𝛾𝑝𝑐𝑟𝑟 + 𝛾𝑝𝑟𝑟𝑟 − 𝛾𝑟𝑟 + 𝑝𝑐𝑟𝑑 − 𝑝𝑐𝑟𝑟 + 𝑟𝑟 − 𝑟𝑠 (𝛾𝑝𝑐 + 𝛾𝑝𝑟 − 𝛾 + 1)
𝛾𝑝𝑐 + 𝛾𝑝𝑟 − 𝛾 + 1

We can solve this equation for any variable. For example, to check the critical collapse probability for
an entirely myopic agent with zero care for the future, we solve the equation for the collapse probability
𝑝𝑐 and substitute the discount factor 𝛾 = 0.

sp.solve(risky_optimal, pc)[0].subs(dcf, 0)

−𝑟𝑟 + 𝑟𝑠
𝑟𝑑 − 𝑟𝑟

Thus, our initution about the ratio between 𝑟𝑠 and 𝑟𝑟 was not entirely correct. In fact, we
can simplify the three reward parameters 𝑟𝑟, 𝑟𝑠, and 𝑟𝑑. As it is irrelevant to the agent’s decision
whether all rewards are multiplied by a factor or all rewards are added by a constant, we can set
𝑟𝑑 = 0 and 𝑟𝑠 = 1 without loss of generality.

Setting the degraded reward to zero, 𝑟𝑑 = 0, and the risky reward to one, 𝑟𝑟 = 1, improves the
transparency and interpretability of the model.

sp.solve(risky_optimal.subs(rr, 1).subs(rd, 0), pc)[0].subs(dcf, 0)
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1 − 𝑟𝑠

Thus, the critical collapse probability ̂𝑝𝑐 for 𝛾 = 0 is given by the ̂𝑝𝑐 = 1 − 𝑟𝑠.

By using symbolic calculations, we improve the transparency and interpretability of our
model.

How can we speed up the computation time with sympy?

6.5.3 Efficient computation

To create a plot as above, it is an excellent strategy to convert this symbolic expression
into a numeric function. In sympy, this is done with the sympy.lambdify function, (called
as sp.lambdify((<symbolic parameters>), <symbolic expression to be turned into a
numeric function>)

risky_optimal_func = sp.lambdify((pc,pr,dcf,rs,rr,rd), risky_optimal)

For example, we can now execute risky_optimal_func for 𝑝𝑐 = 0.2, 𝑝𝑟 = 0.01, 𝛾 = 0.9, 𝑟𝑠 = 0.5,
𝑟𝑟 = 1.0, and 𝑟𝑑 = 0.0 as

risky_optimal_func(0.2, 0.01, 0.9, 0.5, 1.0, 0.0)

-0.19826989619377183

and learn that the risky policy is not optimal in this case.

However, the big advantage of a lambdified function is that we can apply it in vectorized form. This
means the parameters don’t have to be single numbers. They can be vectors or even larger tensors.
See, for example,

gams = np.linspace(0.0001, 0.9999, 9)
risky_optimal_func(0.2, 0.01, gams, 0.5, 1.0, 0.0)

array([ 0.299984 , 0.27779382, 0.25014334, 0.21473437, 0.1677686 ,
0.10248474, 0.00556964, -0.15331544, -0.46154209])

Thus, to recreate our example from above, where we wanted to know how the critical discount
factor ̂𝛾 depends on the collapse probability 𝑝𝑐 for given other parameters, we can now use the
risky_optimal_func directly in vectorized form.

However, if we simply put two vectors (of the same dimension) inside the function, we only get

discountfactors = np.linspace(0.0001, 0.9999, 9)
collapseprobabilities = np.linspace(0.0001, 0.9999, 9)
risky_optimal_func(collapseprobabilities, 0.01, discountfactors, 0.5, 1.0, 0.0)

array([ 0.49989999, 0.3595776 , 0.19241376, 0.01072705, -0.16556291,
-0.31475139, -0.42146066, -0.48138804, -0.499999 ])
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we only get one vector (of the same dimension) out. This is, beacuse vectorization groups changes
along a dimension together.

This means we need to separate the variation in the discount factors (in discountfactors) and the
variation in the collapse probabilities (in collapseprobabilities) into different dimensions. Luckily,
we don’t have to do that manually. The numpy method numpy.meshrid exactly fits this purpose. For
example,

discountfactors = [0.8, 0.9]
collapseprobabilities = [0.1, 0.2, 0.3]
np.meshgrid(discountfactors, collapseprobabilities)

[array([[0.8, 0.9],
[0.8, 0.9],
[0.8, 0.9]]),

array([[0.1, 0.1],
[0.2, 0.2],
[0.3, 0.3]])]

In practise, we can use a meshgrid as follows,

pr_ = 0.01
rs_ = 0.5
rr_ = 1.0
rd_ = 0.0
discountfactors = np.linspace(0.0001, 0.9999, 301)
collapseprobabilities = np.linspace(0.0001, 0.9999, 301)
DCFs, PCs = np.meshgrid(discountfactors, collapseprobabilities)

risky_optimal_func(PCs, pr_, DCFs, rs_, rr_, rd_)

array([[ 0.49989999, 0.49989966, 0.49989932, ..., 0.49398743,
0.49251766, 0.49009707],

[ 0.49656699, 0.49655555, 0.49654403, ..., 0.32758543,
0.29387422, 0.24378043],

[ 0.49323399, 0.49321152, 0.4931889 , ..., 0.20822659,
0.1607447 , 0.09481031],

...,
[-0.49323534, -0.49325773, -0.49328013, ..., -0.4998874 ,
-0.49990965, -0.4999319 ],
[-0.49656768, -0.49657908, -0.49659048, ..., -0.49994305,
-0.49995431, -0.49996556],
[-0.49990001, -0.49990034, -0.49990068, ..., -0.49999835,
-0.49999867, -0.499999 ]])

Notice how quickly that was compared to our previous calculations!

To time how long the cell execution takes more precisely, we can use the %%timeit cell magic com-
mand:
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%%timeit
risky_optimal_func(PCs, pr_, DCFs, rs_, rr_, rd_)

1.92 ms ± 396 �s per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

It executes the cell multiple times and presents us with a short summary statistic. Compare the
average runtime of the cell with the numerical computation. It is around 5000 times faster!

Thus, we can summarize the lambdified sympy expression into a plot_parameter_space function:

def plot_parameter_space(safe_reward=0.5, risky_reward=1.0, degraded_reward=0.0,
recov_prop=0.05):↪

plt.subplot(131); plt.xticks([]); plt.yticks([]);
plt.subplot(133); plt.xticks([]); plt.yticks([]);
plt.subplot(132) # just to center the plot in the middle

resolution=251

X = np.linspace(0.0001, 0.9999, resolution)
Y = np.linspace(0.0001, 0.9999, resolution)
XX, YY = np.meshgrid(X, Y)

ro = risky_optimal_func(XX, recov_prop, YY, safe_reward, risky_reward,
degraded_reward)↪

plt.pcolormesh(XX, YY, ro, cmap='bwr', vmin=-0.1, vmax=0.1)
plt.ylabel('Discount factor'); plt.xlabel('Collapse leverage');

plot_parameter_space()

When working with this Jupyter Notebook directly, we can interactively explore the parameter space
of the model.

For an agent that does not discount the future at all, i.e., with 𝛾 → 1, the critical collapse leverage
yields,
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sp.simplify(sp.solve(risky_optimal.subs(rr,1).subs(rd, 0), pc)[0].subs(dcf, 1))

𝑝𝑟 (1 − 𝑟𝑠)
𝑝𝑟 + 𝑟𝑠

Thus, if there is zero recovery probability 𝑝𝑟 = 0, the safe policy is optimal regardless of the relative
reward 0 < 𝑟𝑠 < 1.

plot_parameter_space(recov_prop=0.0)

If 𝑝𝑟 > 0, then it depends on the relative reward 𝑟𝑠 whether the safe or the risky policy is optimal for
a fully farsighted agent.

Taken together, by using symbolic computation from the sympy package, we improve
interpretability, transparancey and computational efficiency of our model.

6.6 Learning goals revisited

• We introduced the elements of a Markov Decision Process (MDP) and discussed how they
relate to applications in human-environment interactions

• We simulateed and visualized the time-evolution of an MDP.
• We covered what value functions are, why they are usful and how to realte to the agent’s goal

and Bellman equation.
• We computed value functions in serveral ways and visualized how the best policy depends on

other model parameters.
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7 Strategic Interactions

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

7.1 Motivation | Collective action for sustainability

Consider the following questions:

• Do you think climate change is a significant problem the world needs to address?
• Do you think the world has been trying?
• Do you think the world has succeeded?

Scott Barrett asked these questions at the beginning of a talk, which I can highly recommend watching.
The talk is called Climate Change Diplomacy: a Most Dangerous Game and is given at the London
School of Economics.

The typical answers to these questions raise the point of why it is so difficult to succeed in
stopping climate change despite recognizing the problem and trying to solve it.

The outcome depends on all! Carbon dioxide (CO2) is the most prevalent greenhouse gas driving
global climate change. CO2 from different sources (fossil fuels, burned biomass, land ecosystems,
oceans) is being added to Earth’s atmosphere from various locations over the globe. Then, it mixes
relatively fast in the atmosphere, i.e., the consequences for a region do not depend on how much that
region emits but on the overall emissions.

Figure 7.1: This visualization from NASA shows the CO2 added to Earth’s atmosphere over 2021,
split into four major contributors: fossil fuels in orange, burning biomass in red, land
ecosystems in green, and the ocean in blue. The dots on the surface also show how green
land ecosystems and the ocean in blue absorb atmospheric carbon dioxide. Though the
land and oceans are each carbon sinks in a global sense, individual locations can be sources
at different times.
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To stabilize the climate, (net) emissions have to go to zero.

Figure 7.2: Linear damages of climate change

While the climate is the most discussed example, the collective action problem extends to the whole
planetary commons.

7.1.1 Advantages of game theory

In this lecture, we introduce the basics of mathematical game theory to uncover the underlying
mechanisms of strategic interactions. We will see how the behavior of individuals can lead to collective
outcomes that are not in the interest of any individual. We will also discuss possible mechanisms and
variations of the situation that help to overcome these challenges and will acknowledge the limitations
of these variations.

A mathematical game describes an action situation where an outcome relevant to an individual
depends on at least one other actor. This is why we speak of interactions instead of only actions
of a single-agent action situation. The strategic aspect comes into play when the actors are aware of
the interdependence and can anticipate the actions of others.

7.1.2 Learning goals

After this lecture, students will be able to:

• Apply game theory to model multi-agent action situations
• Resolve games by finding Nash equilibria
• Describe the dimensions of a social dilemma
• Explain two special kinds of games: agreement games and threshold public goods, and how they

relate to the dimensions of a social dilemma.
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7.2 Game theory

Life is a game. At least in theory.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import BoundaryNorm
from ipywidgets import interact, fixed

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

Game theory in itself is diverse. Here, we focus on normal-form games with the following elements.

• A finate set of 𝑁 agents ℐ = {2, … , 𝑁} participating in an interaction.
• For each agent 𝑖 ∈ ℐ, a discrete set of options or actions 𝒜𝑖 = {𝐴𝑖

1, … , 𝐴𝑖
𝑀}.

– Let’s denote the joint action set by 𝒜 = 𝒜1 × ⋯ × 𝐴𝑁 .
– An action profile 𝑎 = (𝑎1, … , 𝑎𝑁) ∈ 𝒜 is a joint action of all agents.

• For each agent 𝑖 ∈ ℐ, a welfare, reward or payoff function 𝑅𝑖 ∶ 𝒜 → ℝ.
– 𝑅𝑖(𝑎) is the welfare agent 𝑖 receives when all agents chose 𝑎 = (𝑎1, … , 𝑎𝑁) ∈ 𝒜

• The agent’s policy or strategy 𝑥𝑖 ∶ 𝒜𝑖 → [0, 1].
– 𝑥𝑖(𝑎𝑖) is the probability agent 𝑖 chooses action 𝑎𝑖.
– A strategy is called pure if it chooses actions deterministically. If it is not pure, it is called

mixed instead.

7.2.1 Let’s play

• You are given two choices: abate climate change or continue to pollute the atmosphere.
• You gain 100 Euros (of averated damages) for each person that chooses abate.
• If you choose abate, you must pay 250 Euros.

What would you choose?

Would you have chosen differently if the action had been labeled red and blue?

The agents or actors in this game are all participants in this questionnaire. The actions are abate and
pollute. The payoff is a given in (hypothetical) money. The strategies are the deterministic choice of
either abate or pollute.
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7.2.2 Mathematical model

Let us model the reward functions of this normal-form game in general terms. We have 𝑁 agents, the
players of the game, each with two actions A or P, the choices they can make.

Each abating actor brings a benefit 𝑏 (of averted damages) to all actors at an individual cost 𝑐.
From the perspective of a focal agent, let 𝑁A be the number of all other actors abating. The rewards
are then

• for a polluting actor: 𝑅P(a) = 𝑁A𝑏
• for an abating actor: 𝑅A(a) = (𝑁A + 1)𝑏 − 𝑐

We visualize these payoffs as a function of the number of other abating actors.

def plot_payoffs(N, b, c, ax=None):
Na_other = np.arange(0, N)
bA = (Na_other+1)*b - c
bP = Na_other*b

_, a = plt.subplots() if ax is None else (None, ax)
a.plot(Na_other, bA, '.-', label='Abate')
a.plot(Na_other, bP, '.-', label='Pollute')
a.legend(); a.set_xlabel('Number of other actors abating');
a.set_ylabel('Payoff')↪

plot_payoffs(N=100, b=1, c=50)

We observe that the reward of polluting is always higher than that of abating, regardless of the number
of other actors abating.

Thus, regardless of what the others do, every individual is incentivized to choose pollute. Hence, for
every individual 𝑖, pollute is a dominant strategy.

Definition | Dominant strategy

Let 𝑥 = (𝑥𝑖, 𝑥−𝑖) be a joint strategy, where 𝑥𝑖 is actor 𝑖’s strategy, and 𝑥−𝑖 is the joint strategy of all
other actors.

Actor 𝑖 has a dominant strategy, 𝑥𝑖
𝐷, iff
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𝑅𝑖(𝑥𝑖
𝐷, 𝑥−𝑖) ≥ 𝑅𝑖( ̃𝑥𝑖, �̃�−𝑖)

for all possible other strategies ̃𝑥𝑖, �̃�−𝑖.

Thus, when all actors choose pollute, no actor has an incentive to deviate from this strategy. This is
called a Nash equilibrium.

7.2.3 Nash equilibirum

Definition

Let 𝑥 = (𝑥𝑖, 𝑥−𝑖) be a joint strategy, where 𝑥𝑖 is agent 𝑖’s strategy and 𝑥−𝑖 is the joint strategy of all
other agents.

A joint strategy 𝑥∗ is a Nash-equilibrium when no agent can benefit from changing its strategy unilat-
erally,

𝑅𝑖(𝑥𝑖
∗, 𝑥−𝑖

∗ ) ≥ 𝑅𝑖( ̃𝑥𝑖, 𝑥−𝑖
∗ )

for all agents 𝑖 and all other strategies �̃�𝑖.

In 1950, John Nash showed (in a one-pager) that such an equilibrium always exists for games with
any number of (finite) actors with a finite number of actions and any type of payoffs (beyond zero-sum
games).

DeeDive | Nash’s equilibrium produces the same solution as von Neumann and Morgenstern’s min-
imax in the two-player zero-sum game. But while von Neumann and Morgenstern had struggled to
extend the minimax solution beyond two-player zero-sum games in their 600-page book, Nash’s solu-
tion could be extended to any other case! I recommend the following blog post Time for Some Game
Theory - by Lionel Page for an intuitive introduction to game theory.

Interpretation

There is much confusion about how to interpret a Nash equilibrium, considering the question of
how actors would be able to play a Nash equilibrium in a one-shot interaction. We will briefly discuss
two interpretations: the rationalistic and the learning interpretation.

In the rationalistic interpretation, rational players would mentally simulate the various ways the
game could unfold and choose a Nash equilibrium. However, when faced with non-trivial strategic
situations for the first time, people typically fail to play a Nash equilibrium of the game. When there
is more than one equilibrium, this interpretation cannot say which one an actor would choose (This
is also known as the equilibrium selection problem).

In the learning interpretation, actors learn to play a Nash equilibrium through experience from
repeated interactions over time. Learning here is understood in the broadest sense possible. It could
be through imitation, trial and error, or even (cultural or genetic) evolution (Hoffman & Yoeli, 2022).
However, we will not explicitly model the learning process in this lecture and the whole part on target
equilibria. This will be the main topic of the last part of this course.
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Movie time

The movie A Beautiful Mind portrays John Nash, the inventor of the Nash equilibrium. The Bar
Scene is the moment in the film where Nash experiences the revelation of his equilibrium concept.

Is the solution of the game Nash advocates for in the clip a Nash equilibrium?

7.2.4 Social dilemma

In fact, the bar scene from A Beautiful Mind is a good example of a social dilemma.

A social dilemma is a situation where all actors have an incentive to behave selfishly.

However, everyone would be better off if everyone would behave cooperatively.

The game of abating and polluting is also a social dilemma for some values of the parameters 𝑏 and
𝑐.

plot_payoffs(N=3, b=0.55, c=1.5)

As long as the cost of abating is greater than the benefit, 𝑏 < 𝑐, the unique Nash equilibrium is that
all actors pollute.

However, when the benefit of abating times the number of actors is higher than the cost 𝑐 < 𝑏𝑁 , all
actors would be better off if all actors abate.

When both conditions are met, 𝑏 < 𝑐 < 𝑏𝑁 , the game is a social dilemma.

Note, when 𝑐 > 𝑏𝑁 , all actors polluting is the unique Nash equilibrium and the social optimum.
Everyone is better off when all actors pollute.

This simple model helps to explain why situations with many actors 𝑁 can be more prone to be social
dilemmas. When abating benefits everyone, independent of how many actors are involved, having
many actors makes the situation likely to be a social dilemma. Independent of how large the cost
𝑐 may be, we simply have to increase 𝑁 , such that 𝑐 < 𝑏𝑁 . The condition that the benefits 𝑏 are
independent of 𝑁 refers to the public good nature of the benefits. The benefits of having an intact
and healthy planet with maintenance and regulating ecosystem services serve everyone, regardless of
how many. They are so-called non-rivalrous. Other services of Nature are rivalrous, e.g., the fish in
the ocean.
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7.3 Dimensions of a social dilemma

Let us dissect a social dilemma along two dimensions:

• the greed 𝐺 to exploit others, and
• the fear 𝐹 of being exploited by others.

For two actors that must face the decision between abate or pollute, we can summarize the payoffs in
a matrix,

Abate Pollute
Abate 1 | 1 −1 − 𝐹 | +1 + 𝐺
Pollute +1 + 𝐺 | −1 − 𝐹 −1 | −1

.

Depending on whether the greed 𝐺 and fear 𝐹 are positive or negative, we can distinguish four types
of games Figure 10.10.

Figure 7.3: Dimensions of a social dilemma with ordinal payoffs and Nash equilibira shown in boxes.

In Figure 10.10, the payoff values are ordinal, meaning that only their order, 3 > 2 > 1 > 0, is
considered of relevance.

Case 1 | Tragedy (𝐺 > 0, 𝐹 > 0).

When actors are greedy to exploit others and fear being exploited by others, the game is a tragedy.
Regardless of what others do, each agent has an incentive to pollute. Thus, the Nash equilibrium is
that all actors pollute. The tragedy is that all actors would be better off if all actors abate. Another
common name for this situation is the Prisoner’s dilemma.

Case 2 | Divergence (𝐺 > 0, 𝐹 < 0).

When actors are greedy to exploit others but do not fear being exploited by others, the actors are in
a situation of divergence. When enough other actors pollute, individual incentives regard abate better
than pollute. Thus, in the two-actor case, both (abate, pollute) and (pollute, abate) are Nash
equilibria, where the polluting actor receives more than the abating one (as long as 𝐹 > −(𝐺 + 2)).
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This is a situation of inequality emerging despite both actors being identical. It also induces a first-
mover advantage, as the first actor to choose pollute will receive more reward than the abating actor.
We call this situation divergence since the collective remains divided and only partial sustainability is
achieved. Other popular names are chicken, hawk-dove, snow-drift describing different stories around
the situation.

Case 3 | Coordination (𝐺 < 0, 𝐹 > 0).

When actors are not greedy to exploit others but fear being exploited by others, they are in a situation
of coordination. What is better for an individual mirrors what the others do. Thus, both (abate,
abate) and (pollute, pollute) are Nash equilibria. In both equilibria, both agents are equally
well off, but it depends on which of the two equilibria the actors coordinate. The agents are better off
in (abate, abate) than in (pollute, pollute). However, coordination may still be difficult to achieve, e.g.,
because of anonymity, a lack of communication, or false beliefs. Nevertheless, turning a tragedy
into a coordination game is a common mechanism to resolve the social dilemma. Another
popular name for this situation is the stag-hunt game.

Case 4 | Comedy (𝐺 < 0, 𝐹 < 0).

When there is neither greed to exploit others nor fear to be exploited by others, the actors are in
a situation of comedy. Regardless of what others do, each agent has an incentive to abate. Thus,
the joint strategy (abate, abate) is the only Nash equilibrium. Since individual and collective
interests point to the same solution, we call this the comedy of the commons (Ostrom et al., 2002).
The Harmony game is another common name for this situation.

7.3.1 Limitations

We assumed that the actors were anonymous. However, actors are often not anonymous, especially
in the governance of local commons. They know each other and can communicate and reciprocate
(Anderies & Janssen, 2016; Nowak, 2006; Ostrom et al., 2002). This can help overcome the social
dilemma. We will discuss and model this in the last part of the course.

We also did not discuss any mechanisms that let one or more of these games (or incentive regimes)
emerge. We will discuss two such broad mechanisms in the remainder of this chapter: international
agreements and threshold public goods.

7.4 International Agreements

Let us revisit our climate commons dilemma from above. Each abating actor brings a benefit 𝑏 = 100
EUR (of averted damages) to all actors at an individual cost 𝑐 = 250 EUR. One way to resolve this
social dilemma could be through an agreement. The actors could agree to abate. In the following,
we will model this additional game layer, highlighting its potential and limitations.
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7.4.1 Let’s play

We assume that an agreement has already been negotiated. If you sign the agreement, you must
choose abate. However, the agreement comes only into force if there are at least three signatories.

You gain 100 Euros for each person who chooses abate. If you choose abate, you have to pay 250
Euros

You have to make three choices:

1) whether you sign or not sign the agreement
2) what you choose if there are not enough signatories: abate or pollute
3) what you choose if you did not sign the agreement: abate or pollute

7.4.2 Agreement participation game

Generally, in this model, the agreement mandates that all signatories abate if at least 𝑘∗ actors sign
the agreement. Then, at

• Stage 1: Every actor chooses whether or not to sign the agreement. At
• Stage 2: The signatories choose jointly whether to abate or pollute. Finally, at
• Stage 3: The non-signatories choose independently whether to abate or pollute.

7.4.3 Self-enforcing agreements

An international environmental agreement (IEA) must be self-enforcing, i.e., a Nash equilibrium in
the game-theoretic sense, as there are no global enforcement mechanisms.

• No signatory can gain by withdrawing unilaterally
• No non-signatory can gain by joining
• Thus, there is no incentive to re-negotiate

7.4.4 Critical participation level 𝑘∗

The crucial question is, what is the critical participation level 𝑘∗, such that the agreement is self-
enforcing?

Suppose there are 𝑘 signatories.

• In a tragedy dilemma, non-signatories will defect in Stage 3.

• Signatories have an incentive to abate if 𝑘𝑏 − 𝑐 ≥ 0.
• Rearranging yields: if 𝑘 ≥ 𝑐/𝑏, signatories abate.
• Let 𝑘0 be the smallest integer greater than or equal to 𝑐/𝑏.
• Suppose there are 𝑘0 signatories.

• No non-signatory would want to join the agreement.

• Thus, the critical participation level is
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𝑐
𝑏 + 1 ≥ 𝑘∗ ≥ 𝑐

𝑏

def plot_agreement_payoffs(N, b, c, ax=None):
kstar = int(np.ceil(c/b)); print(kstar)

Ns_other = np.arange(0, N)
bS = ((Ns_other+1)*b - c < 0)*0 + ((Ns_other+1)*b - c >= 0)*((np.arange(N)+1)*b
- c)↪

bN = ((Ns_other)*b - c < 0)*0 + ((Ns_other)*b - c >= 0)*np.arange(N)*b

_, a = plt.subplots() if ax is None else (None, ax)
a.plot(Ns_other, bS, '.-', label='Signatories')
a.plot(Ns_other, bN, '.-', label='Non-signatories')
a.legend(); a.set_xlabel('Number of other signatories'); a.set_ylabel('Payoff')

7.4.5 Agreements turn tragedy into divergence

Full participation in an agreement is difficult (only possible if costs are astronomical). This
holds for many generalizations (e.g., non-linear payoff functions/cost functions).

fig, axs = plt.subplots(1,2, figsize=(11,3))
plot_agreement_payoffs(8, 1, 3.5, ax=axs[0]); axs[0].set_ylim(-3,8)
plot_payoffs(8, 1, 3.5, ax=axs[1]); axs[1].set_ylim(-3,8);

4

7.5 Threshold Public Goods

Is the tragedy dilemma the game we are playing?
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Figure 7.4: Climate tipping risks

Let’s play again

• You are given two choices: abate climate change or continue to pollute the atmosphere.
• You gain 100 Euros (of averated damages) for each person that chooses abate.
• If you choose abate, you must pay 250 Euros.
• If not all choose to abate, the climate will tip, and everybody will lose 350 Euros.

What would you choose?

7.5.1 Threshold dilemma game

In general, we can model a threshold public goods game as follows:

• There are 𝑁 -actors.
• Each actor can contribute an amount 𝑐 (by abating) to the public good, or they contribute

nothing and pollute.
• Each contributed unit brings a benefit 𝑏𝑢 (of averted linear damages) to all actors.
• If the collective does not contribute at least a critical threshold amount 𝑇crit, all actors experience

a catastrophic impact 𝑚 of non-linear tipping damages.

How does the threshold dilemma map onto the tragedy dilemma? For simplicity, let’s assume
actors have two actions:

• Contributing a fair amount to avert the collapse, 𝑐 = 𝑇crit/𝑁
• Contributing nothing.

The unit benefit 𝑏𝑢 relates to a benefit 𝑏 from abating from the tragedy dilemma by

𝑏 = 𝑏𝑢𝑐 = 𝑏𝑢𝑇crit/𝑁
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def plot_threshold_payoff(N, bu, Tc, m, ax=None):
c=Tc/N; b=bu*c

Na_other = np.arange(0, N)
bA = (Na_other+1)*b - c - m*(Na_other+1<N)
bP = Na_other*b - m*(Na_other<N)

_, a = plt.subplots() if ax is None else (None, ax)
a.plot(Na_other, bA, '.-', label='Abate')
a.plot(Na_other, bP, '.-', label='Pollute')
a.legend(); a.set_xlabel('Number of other actors abating');
a.set_ylabel('Payoff')↪

Contribution thresholds turn tragedy into coordination challenge (Figure 7.5).

plot_threshold_payoff(5, 0.5, 50, 6);

Figure 7.5: Payoffs from the thresholds game.

Nations are good at solving coordination challenges via international conferences and agreements. The
Montreal Protocol on Substances that Deplete the Ozone Layer is the landmark multilateral envi-
ronmental agreement that regulates the production and consumption of nearly 100 artificial chemicals
referred to as ozone-depleting substances (ODS). When released into the atmosphere, those chemicals
damage the stratospheric ozone layer, Earth’s protective shield that protects humans and the environ-
ment from harmful levels of ultraviolet radiation from the sun. Adopted on 16 September 1987, the
Protocol is, to date, one of the rare treaties to achieve universal ratification. [Source | UNEP]

Conditions for coordination

Under what conditions on the parameters does a threshold turn a tragedy dilemma into a coordination
challenge?

The benefit of a cooperating actor choosing to abate when all others choose to abate is

𝑅𝑖(A, A) = 𝑁𝑏𝑢
𝑇𝑐
𝑁 − 𝑇𝑐

𝑁
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def bAA(N, bu, Tc, m): return N*bu*Tc/N - Tc/N

The benefit of a polluter, when all others choose abate is

𝑅𝑖(P, A) = (𝑁 − 1)𝑏𝑢
𝑇𝑐
𝑁 − 𝑚

def bPA(N, bu, Tc, m): return (N-1)*bu*Tc/N - m

When all other actors pollute, there is no incentive to abate (because the collapse happens anyway).
But when all other actors abate, there is an incentive to abate if

𝑅𝑖(A, A) > 𝑅𝑖(P, A).

Rearranging yields,
𝑚∗ = 1 − 𝑏𝑢

𝑁 𝑇 ∗
𝑐 .

# Parameters
bu=0.5; N = 5

# Varying parameters
ms = np.linspace(0, 10, 201);
Ts = np.linspace(0, 100, 251);
TT, MM = np.meshgrid(Ts, ms)

# Get the plot nice
cmap = plt.colormaps['PiYG'];
norm = BoundaryNorm([0,0.5,1], ncolors=cmap.N, clip=True)

# do the plot
cb = plt.pcolormesh(TT, MM, bAA(N, bu, TT, MM)>bPA(N, bu, TT, MM), cmap=cmap,

norm=norm)↪

# make the plot nice (again)
cbar = plt.colorbar(cb, ticks=[0.25, 0.75]);
cbar.ax.set_yticklabels(['Tragedy', 'Coordination'])

plt.xlabel('Threshold'); plt.ylabel('Impact');
plt.plot(Ts, Ts/N*(1-bu));
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7.5.2 Uncertainty

What if there is uncertainty? We will consider two kinds of uncertainty:

• Impact uncertainty: We don’t know exactly how bad it is going to be
• Threshold uncertainty: We don’t know exactly where the threshold lies

Impact uncertainty

Assume the impact 𝑚 is uncertain.

The impact 𝑚 is distributed according to a probability distribution.

Expected value theory underlying game theory suggests that decision-makers will only care about the
expected value.

Thus, as long as 𝑚certain = 𝔼[𝑚uncertain], the model remains unchanged.

Here, we consider a very simple distribution of 𝑃𝑟(𝑚). There is a 1/3 chance of a small impact
𝑚certain − Δ𝑚, a 1/3 chance of a medium impact 𝑚 = 𝑚certain, and a 1/3 chance of a large impact
𝑚 = 𝑚certain + Δ𝑚. Obviously, the expected value is 𝑚certain.

def plot_uncertainimpacts_payoffs(N, bu, Tc, m, delta_m=2, ax=None):
c=Tc/N; b=bu*c;

Na_other_fair = np.arange(0, N)

bPl = Na_other_fair*b - (m-delta_m)*(Na_other_fair<N)
bPc = Na_other_fair*b - m*(Na_other_fair<N)
bPh = Na_other_fair*b - (m+delta_m)*(Na_other_fair<N)

bAl = (Na_other_fair+1)*b - c - (m-2)*(Na_other_fair+1<N)
bAc = (Na_other_fair+1)*b - c - m*(Na_other_fair+1<N)
bAh = (Na_other_fair+1)*b - c - (m+2)*(Na_other_fair+1<N)

bP = np.mean([bPl, bPc, bPh], axis=0)
bA = np.mean([bAl, bAc, bAh], axis=0)

_, a = plt.subplots() if ax is None else (None, ax)
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col1 = plt.rcParams['axes.prop_cycle'].by_key()['color'][0]
col2 = plt.rcParams['axes.prop_cycle'].by_key()['color'][1]

a.plot(Na_other_fair, bAc, '.-', color=col1, alpha=0.5)
a.plot(Na_other_fair, bAl, '.--', color=col1, alpha=0.5)
a.plot(Na_other_fair, bAh, '.-.', color=col1, alpha=0.5)

a.plot(Na_other_fair, bPc, '.-', color=col2, alpha=0.5)
a.plot(Na_other_fair, bPl, '.--', color=col2, alpha=0.5)
a.plot(Na_other_fair, bPh, '.-.', color=col2, alpha=0.5)

a.plot(Na_other_fair, bA, '.-', label='Average abate', color=col1)
a.plot(Na_other_fair, bP, '.-', label='Average pollute', color=col2)

a.set_xlabel('Number of other actors abating'); a.set_ylabel('Payoffs')
a.legend()

plot_uncertainimpacts_payoffs(N=5, bu=0.5, Tc=50, m=6, delta_m=4)

Thus, impact uncertainty does not change the outcome of our model.

Threshold uncertainty

Empirically, there is considerable uncertainty about the critical threshold 𝑇crit (Figure 7.4).

Suppose, the threshold 𝑇crit is uncertain:

• with 𝑝 = 1/3 it is at 𝑇crit,low = 𝑇crit,certain − 10
• with 𝑝 = 1/3 it is at 𝑇crit,mid = 𝑇crit,certain
• with 𝑝 = 1/3 it is at 𝑇crit,high = 𝑇crit,certain + 10

Thus, expected value of the threshold remains the same.

def plot_uncertainthresholds_payoff(N, bu, Tc, m, ax=None):
c=Tc/N; b=bu*c
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Na_other_fair = np.arange(0, N)

bD = Na_other_fair*b - m*(Na_other_fair<N)

bC = (Na_other_fair+1)*b - c - m*(Na_other_fair+1<N)
bL = (Na_other_fair+1)*b - c - m*(Na_other_fair+1<N)
bH = (Na_other_fair+1)*b - c - m*(Na_other_fair<N)

bA = np.mean([bC, bL, bH], axis=0)

_, a = plt.subplots() if ax is None else (None, ax)
a.plot(Na_other_fair, bA, '.-', label='Average abate')
a.plot(Na_other_fair, bD, '.-', label='Pollute')
a.plot(Na_other_fair, bC, '.-', label='Abate - Center threshold', color='grey')
a.plot(Na_other_fair, bL, '.--', label='Abate - Low threshold', color='black')
a.plot(Na_other_fair, bH, '.-.', label='Abate - High threshold',
color='lightgrey')↪

a.legend(); a.set_xlabel('Number of other actors abating');
a.set_ylabel('Payoff')↪

Threshold uncertainty reverts the coordination challenge back to a tragedy

plot_uncertainthresholds_payoff(N=5, bu=0.5, Tc=50, m=6)

Threshold uncertainty raises the cost of averting collapse. Essentially, this is because low thresholds
cannot compensate for high thresholds. High thresholds cause collapse, making actors worse
off than those with medium thresholds. However, low thresholds cannot make actors better off than
medium thresholds.

Threshold dilemmas summary

Contribution thresholds can turn tragedy into a coordination challenge - given a sufficiently severe
collapse impact and sufficiently low threshold.

Uncertainty is important: Impact uncertainty has no effect - But threshold uncertainty can revert
the coordination challenge back to tragedy.
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Experimental evidence

Our model allows us to make predictions about how actors behave in threshold public goods games
across the four (two by two) treatments of uncertainty:

1) Impact uncertainty has no effect. Certainty and Impact uncertainty should yield the same
behavior (abating), just as Threshold uncertainty and Threshold+Impact uncertainty should
yield the same behavior (polluting).

2) Threshold uncertainty has an effect. The certainty and impact uncertainty treatment
should yield a different behavior than the treatments with threshold uncertainty.

Both hypotheses are confirmed by the experimental evidence (Figure 7.6) (Barrett & Dannenberg,
2012).

Figure 7.6: Experimental evidence on threshold public goods games

7.6 Learning goals revisited

In this chapter,

we applied game theory to model multi-agent action situations.

We resolved games by defining and finding Nash equilibria.

We described and analyzed the dimensions of a social dilemma.

We introduced and analyzed two special kinds of games: agreement games and threshold public goods.

• Agreement games can turn tragedies into divergence dilemmas.
• Threshold public goods can turn tragedies into coordination challenges - given enough certainty

about where the threshold lies.
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7.6.1 Overall limitations

Our equilibrium game-theoretic model left it unclear where the strategies come from or from
which process they arise.

The models in this chapter did not explicitly consider environmental dynamics.

The consequences for the actors were assumed to be experienced immediately.

7.6.2 Bibliographic remarks

The fear and greed dimensions of a social dilemma are inspired by (Macy & Flache, 2002).

The name of the four social dilemma types is inspired by (Ostrom et al., 2002), who talks about the
drama of the commons. Commons may sometimes be a tragedy, sometimes a comedy, often something
in between.

International environmental agreement games are coined by (Barrett, 1994, 2005).
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8 Dynamic Interactions

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

8.1 Motivation | Futures and environments

Prototypical models did not explicitly consider future environmental consequences of strategic inter-
actions (Figure 8.1).

Figure 8.1: Environmental dynamics are relevant to consider

However, many real-world scenarios involve strategic interactions with environmental consequences.
For example, the tragedy of the commons, agreements, and threshold public goods can be extended
to include ecological consequences. In this lecture, we will introduce dynamic games, particularly
stochastic or Markov games, to model strategic interactions with environmental consequences.

Stochastic games integrate Markov chains, Markov decision processes, and game theory to model
strategic interactions in dynamic environments. They are particularly useful for modeling human-
environment interactions, where the environment is affected by human actions and, in turn, affects
human behavior.

8.1.1 Advantages of dynamic games

Using dynamic games, particularly stochastic games to model strategic interactions with environ-
mental consequences has several advantages:

• inherently stochastic - to account for uncertainty
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• nonlinear - to account for structural changes
• agency - to account for human behavior
• interactions - to account for strategic interactions
• future-looking - to account for the trade-off between short-term and long-term
• feedback - between multiple agents and the environment

Stochastic games also have structural benefits that make them compatible with numerical computer
modeling due to their discrete action and state sets, as well as their advancement in discrete time
intervals.

8.1.2 Learning goals

After this lecture, students will be able to:

• Describe the elements of a stochastic game
• Apply stochastic games to model human-environment interactions
• Analyze the strategic interactions in stochastic games

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

8.2 Dynamic games | Strategic interactions with environmental
consequences

Figure 8.2: Multiagent-Environment Interface

Here, we focus on environments with a discrete state set in discrete time. These specifications are
commonly called stochastic or Markov games. They consist of the following elements:
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• A discrete set of environmental contexts or states 𝒮 = {𝑆1, … , 𝑆𝑍}.
– We denote an environmental state by 𝑠 ∈ 𝒮.

• A finate set of 𝑁 agents ℐ = {2, … , 𝑁} participating in an interaction.
• For each agent 𝑖 ∈ ℐ, a discrete set of options or actions 𝒜𝑖 = {𝐴𝑖

1, … , 𝐴𝑖
𝑀}.

– Let’s denote the joint action set by 𝒜 = 𝒜1 × ⋯ × 𝐴𝑁 .
– An action profile a = (𝑎1, … , 𝑎𝑁) ∈ 𝒜 is a joint action of all agents.

Time 𝑡 advances in discrete steps 𝑡 = 0, 1, 2, …, and agents choose their actions simultaneously.

• We denote the state at time 𝑡 by 𝑠𝑡 and the joint action by a𝑡.

The transitions tensor 𝑇 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1] defines the environmental dynamics.

• 𝑇 (𝑠, a, 𝑠′) is the probability of transitioning from state 𝑠 ∈ 𝒮 to 𝑠′ ∈ 𝒮 given the joint action a.
• Thus, ∑𝑠′ 𝑇 (𝑠, a, 𝑠′) = 1 most hold for all 𝑠 ∈ 𝒮 and a ∈ 𝒜.

The reward tensor R ∶ ℐ × 𝒮 × 𝒜 × 𝒮 → ℝ defines the agents’ short-term welfare, utility, rewards,
or payoffs.

• 𝑅𝑖(𝑠, a, 𝑠′) is the reward agent 𝑖 receives for transitioning from state 𝑠 to 𝑠′ given the joint action
a.

• We assume that it is each agent 𝑖’s goal to maximize their expected discounted sum of future
rewards, 𝐺𝑖 = ∑∞

𝑡=0(𝛾𝑖)𝑡𝑅𝑖(𝑠𝑡, a𝑡, 𝑠𝑡+1), where 𝛾𝑖 ∈ [0, 1) is the discount factor.

We assume that agents can condition their probabilities of choosing actions on the current state 𝑠𝑡,
yielding so-called Markov policies or strategies, x ∶ ℐ × 𝒮 × 𝒜𝑖 → [0, 1].

• 𝑥𝑖(𝑠, 𝑎) is the probability agent 𝑖 chooses action 𝑎 in state 𝑠.

8.3 Application | Ecological public good

We apply the stochastic game framework to integrate the fact that we are embedded in a shared
environment and care about the future to some extent. We do so by considering a public good game
with ecological consequences (Figure 8.3), which allows us to answer how the strategic incentives
depend on their level of care for future rewards.

8.3.1 States, agents and actions

The environment consists of two states, 𝒮 = {p, d}, representing a prosperous and a degraded state
of the environment.

state_set = ['prosperous,' 'degraded']; p=0; g=1; Z=2

We also defined two Python variable p=0 and g=1 to serves as readable and memorable indices to
represent the environmental contexts.

There are 2 identical agents. In each state 𝑠 ∈ 𝒮, each agent 𝑖 ∈ {1, 2} can choose within their action
set between either cooperation or defection, 𝒜𝑖 = {c, d}.
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Figure 8.3: Ecological public good collective decision-making environment

action_sets = ['cooperate', 'defect']; c=0; d=1; M=2

Likewise, we define two Python variables, c=0 and d=1, to serve as readable and memorable indices
to represent the agents’ actions.

We denote the number of cooperating agents by 𝑁𝑐. The number of defecting agents is 𝑁𝑑 = 𝑁 −𝑁𝑐.

8.3.2 Transitions | Environmental dynamics

We represent the environmental dynamics, i.e., the transitions between environmental state con-
texts, in a 𝑍 × 𝑀 × 𝑀 × 𝑍 tensor, where 𝑍 is the number of states and 𝑀 is the number of actions.
In this representation,

• the first dimension corresponds to the current state,
• the second to the action profile of the first agent,
• the third to the action profile of the other agent, and
• the fourth and last dimension corresponds to the next state.

TransitionTensor = np.zeros((Z, M, M, Z), dtype=object)

The environmental dynamics are then governed by two parameters: a collapse leverage, 𝑞𝑐, and a
recovery probability, 𝑝𝑟.

qc, pr = sp.symbols('q_c p_r')

A collapse from the prosperous to the degraded state occurs with a transition probability

𝑇 (p, a, g) = 𝑁𝑑
𝑁 𝑞𝑐.
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TransitionTensor[p, c, c, g] = 0 # no agent defects
TransitionTensor[p, d, c, g] = qc/2 # one agent defects
TransitionTensor[p, c, d, g] = qc/2 # other agent defects
TransitionTensor[p, d, d, g] = qc # all agents defect

Thus, if all agents defect, the environment collapses with probability 𝑞𝑐. The collapse leverage indicates
how much impact a defecting agent exerts on the environment. The environment remains within the
prosperous state with probability, 𝑇 (p, a, p) = 1 − 𝑁𝑑

𝑁 𝑞𝑐.

TransitionTensor[p, : , :, p] = 1 - TransitionTensor[p, : , :, g]

In the degraded state, we set the recovery to occur with probability,

𝑇 (g, a, p) = 𝑝𝑟,

independent of the agents’ actions.

TransitionTensor[g, :, :, p] = pr

The probability that the environment remains in the degraded state is then, 𝑇 (g, a, g) = 1 − 𝑝𝑟.

TransitionTensor[g, :, :, g] = 1-pr

Together, our transition tensor is then given by

sp.Array(TransitionTensor)

⎡
⎢⎢
⎣

[ 1 0
1 − 𝑞𝑐

2
𝑞𝑐
2

] [1 − 𝑞𝑐
2

𝑞𝑐
2

1 − 𝑞𝑐 𝑞𝑐
]

[𝑝𝑟 1 − 𝑝𝑟
𝑝𝑟 1 − 𝑝𝑟

] [𝑝𝑟 1 − 𝑝𝑟
𝑝𝑟 1 − 𝑝𝑟

]

⎤
⎥⎥
⎦

Last, we make sure that our transition tensor is normalized, i.e., the sum of all transition probabilities
from a state-joint-action pair to all possible next states equals one, ∑𝑠′ 𝑇 (𝑠, a, 𝑠′) = 1.

TransitionTensor.sum(-1)

array([[[1, 1],
[1, 1]],

[[1, 1],
[1, 1]]], dtype=object)

8.3.3 Rewards | Short-term welfare
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RewardTensor = np.zeros((2, Z, M, M, Z), dtype=object)

Rewards in the prosperous state follow the standard public goods game with a synergy factor 𝑟 and
a cost of cooperation 𝑐.

r, cost = sp.symbols('r c')

The rewards for cooperating and defecting agents are then given by

𝑅𝑖(p, 𝑎𝑖, 𝑎−𝑖, p) = {
𝑟𝑐(𝑁𝑐+1)

𝑁 − 𝑐, if 𝑎𝑖 = c,
𝑟𝑐𝑁𝑐

𝑁 , if 𝑎𝑖 = d.

RewardTensor[:, p, c, c, p] = r*cost - cost
RewardTensor[:, p, d, d, p] = 0
RewardTensor[0, p, c, d, p] = RewardTensor[1, p, d, c, p] = r*cost/2 - cost
RewardTensor[0, p, d, c, p] = RewardTensor[1, p, c, d, p] = r*cost/2

When a state transition involves the degraded state, g, the agents only receive an environmental
collapse impact 𝑚:

m = sp.symbols('m')

𝑅𝑖(p, a, g) = 𝑅𝑖(g, a, g) = 𝑅𝑖(g, a, p) = 𝑚, for all a, 𝑖.

RewardTensor[:, p, :, :, g] = RewardTensor[:, g, :, :, g] = RewardTensor[:, g, :, :,
p] = m↪

Together, our reward tensor is then given by

sp.Array(RewardTensor)

⎡
⎢⎢
⎣

⎡
⎢⎢
⎣

[𝑐𝑟 − 𝑐 𝑚
𝑐𝑟
2 − 𝑐 𝑚] [

𝑐𝑟
2 𝑚
0 𝑚]

[𝑚 𝑚
𝑚 𝑚] [𝑚 𝑚

𝑚 𝑚]

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

[𝑐𝑟 − 𝑐 𝑚
𝑐𝑟
2 𝑚] [

𝑐𝑟
2 − 𝑐 𝑚

0 𝑚]

[𝑚 𝑚
𝑚 𝑚] [𝑚 𝑚

𝑚 𝑚]

⎤
⎥⎥
⎦

⎤
⎥⎥
⎦

8.3.4 DeepDive | Subsituting parameter values

In this chapter, we defined the transition and reward tensors as general numpy arrays with data types
object, which we filled with symbolic expressions from sympy. To manipulate and substitute these
expressions, we can use the sympy.subs method, however, not directly on the numpy array. Instead,
we define a helper function substitute_in_array that takes a numpy array and a dictionary of
substitutions and returns a new array with the substitutions applied.
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def substitute_in_array(array, subs_dict):
result = array.copy()
for index,_ in np.ndenumerate(array):

if isinstance(array[index], sp.Basic):
result[index] = array[index].subs(subs_dict)

return result

To make this work, it seems to be of critical importance that the subsitution dictionary is
given as a dictionary in the form of {<symbol_variable>: <subsitution>, ...} and not as
dict(<symbol_variable>=<subsitution>, ...). For example,

substitute_in_array(TransitionTensor, {pr:0.01, qc:0.2}).astype(float)

array([[[[1. , 0. ],
[0.9 , 0.1 ]],

[[0.9 , 0.1 ],
[0.8 , 0.2 ]]],

[[[0.01, 0.99],
[0.01, 0.99]],

[[0.01, 0.99],
[0.01, 0.99]]]])

8.3.5 Policies | Strategic choices

The crucial question is whether or not the agents should cooperate or defect in the prosperous
state, p, under the assumption that agents are anonymous - and how to answer depends on the
parameter conditions 𝑞𝑐, 𝑝𝑟, 𝛾, 𝑟, 𝑐, and 𝑚.

Anonymity means that agents do not consider the game’s history, i.e., behave according to a Markov
policy. We analyze the two extreme cases: An agent can either cooperate or defect in the prosperous
state, p.

Generally, a single agent’s policy is represented by a 𝑍 × 𝑀 tensor. The cooperative policy is then
given by

Xsa_coo = 0.5 * np.ones((Z, M))
Xsa_coo[p, c] = 1
Xsa_coo[p, d] = 0

The defective policy is given by

Xsa_def = 0.5 * np.ones((Z, M))
Xsa_def[p, c] = 0
Xsa_def[p, d] = 1

To obtain the incentive regimes, we need to calculate the long-term values of the four policy combina-
tions:
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• mutual cooperation (cc), i.e. both agents cooperate,
• unilateral defection (dc), i.e. one agent defects, and the other cooperates,
• unilateral cooperation (cd), i.e. one agent cooperates, and the other defects, and
• mutual defection (dd), i.e. both agents defect.

They can also be represented by a meta-game payoff matrix, where the rows represent the focal agent’s
policies, and the columns represent the opponent’s policies,

c d
c 𝑣cc 𝑣cd
d 𝑣dc 𝑣dd

We summarize these respecitve joint policies in four 𝑁 × 𝑍 × 𝑀 tensors,

Xisa_cc = np.array([Xsa_coo, Xsa_coo])
Xisa_cd = np.array([Xsa_coo, Xsa_def])
Xisa_dc = np.array([Xsa_def, Xsa_coo])
Xisa_dd = np.array([Xsa_def, Xsa_def])

8.3.6 State values | Long-term welbeing

Long-term values are defined precisely like in the single-agent case (03.01-SequentialDecisions) except
that they now depend on the joint policy x and each agent 𝑖 holds their own values.

Given a joint policy x, we define the state value for agent 𝑖, 𝑣𝑖
x(𝑠), as the expected gain, 𝔼x[𝐺𝑖

𝑡|𝑆𝑡 = 𝑠],
when starting in state 𝑠 and the following the policy x,

𝑣𝑖
x(𝑠) ∶= 𝔼x[𝐺𝑖

𝑡|𝑆𝑡 = 𝑠] = (1 − 𝛾𝑖)𝔼x [
∞

∑
𝜏=𝑡

(𝛾𝑖)𝜏𝑅𝑖
𝑡+𝜏+1|𝑆𝑡 = 𝑠] , for all 𝑠 ∈ 𝒮,

They are also computable like in the single-agent case (03.01-SequentialDecisions) by solving the
Bellman equations in matrix form,

v𝑖
x = (1 − 𝛾𝑖)(1𝑍 − 𝛾𝑖Tx)−1R𝑖

x.

Before we solve this equation, we focus on computing the effective transition matrix Tx and the
average reward R𝑖

x, given a joint policy x.

The transition matrix Tx is a 𝑍 × 𝑍 matrix, where the element 𝑇x(𝑠, 𝑠′) is the probability of
transitioning from state 𝑠 to 𝑠′ under the joint policy x. It is computed as

𝑇x(𝑠, 𝑠′) = ∑
𝑎1∈𝒜1

… ∑
𝑎𝑁∈𝒜𝑁

𝑥1(𝑠, 𝑎1) … 𝑥𝑁(𝑠, 𝑎𝑁)𝑇 (𝑠, 𝑎1, … , 𝑎𝑁 , 𝑠′).

For 𝑁 = 2, we implement in Python as follows:
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def compute_symbolic_TransitionMatrix_Tss(policy_Xisa,
transitions_Tsas):

s, a, b, s_ = 0, 1, 2, 3 # defining indices for convenience

Tss = sp.Matrix(np.einsum(policy_Xisa[0], [s, a],
policy_Xisa[1], [s, b],
transitions_Tsas, [s, a, b, s_],
[s,s_]))

return sp.simplify(Tss)

For example, the transition matrix for the joint policy x = (d, c) is then given by

compute_symbolic_TransitionMatrix_Tss(Xisa_dc, TransitionTensor)

[1.0 − 0.5𝑞𝑐 0.5𝑞𝑐
1.0𝑝𝑟 1.0 − 1.0𝑝𝑟

]

The average reward R𝑖
x is a 𝑁 × 𝑍-matrix, where the element 𝑅𝑖

x(𝑠) is the expected reward agent
𝑖 receives in state 𝑠 under the joint policy x. It is computed as

𝑅𝑖
x(𝑠) = ∑

𝑎1∈𝒜1
… ∑

𝑎𝑁∈𝒜𝑁
𝑥1(𝑠, 𝑎1) … 𝑥𝑁(𝑠, 𝑎𝑁)𝑇 (𝑠, 𝑎1, … , 𝑎𝑁 , 𝑠′)𝑅𝑖(𝑠, 𝑎1, … , 𝑎𝑁 , 𝑠′).

For 𝑁 = 2, we implement in Python as follows:

def compute_symbolic_AverageReward_Ris(policy_Xisa,
transitions_Tsas,
rewards_Risas):

i, s, a, b, s_ = 0, 1, 2, 3, 4 # defining indices for convenience
Ris = sp.Array(np.einsum(policy_Xisa[0], [s, a],

policy_Xisa[1], [s, b],
transitions_Tsas, [s, a, b, s_],
rewards_Risas, [i, s, a, b, s_],
[i, s]))

return sp.simplify(Ris)

For example, the average reward under the joint policy x = (d, c) is then given by

compute_symbolic_AverageReward_Ris(Xisa_dc, TransitionTensor, RewardTensor)

[ − 𝑐𝑟(0.5𝑞𝑐−1.0)
2 + 0.5𝑚𝑞𝑐 1.0𝑚

− 𝑐(0.5𝑞𝑐−1.0)(𝑟−2)
2 + 0.5𝑚𝑞𝑐 1.0𝑚]

With the transition matrix Tx and the average reward R𝑖
x, we can now solve the Bellman equation for

the state values v𝑖
x. For convenience, we assume a homogeneous discount factor 𝛾𝑖 = 𝛾 for all agents

𝑖.
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dcf = sp.symbols('gamma')
def compute_symbolic_statevalues(policy_Xisa,

transitions_Tsas,
rewards_Risas,
discountfactor=dcf):

i, s, a, s_ = 0, 1, 2, 3 # defining indices for convenience

Tss = compute_symbolic_TransitionMatrix_Tss(
policy_Xisa, transitions_Tsas)

Ris = compute_symbolic_AverageReward_Ris(
policy_Xisa, transitions_Tsas, rewards_Risas)

inv = (sp.eye(2) - discountfactor*Tss).inv();
inv.simplify() # sp.simplify() often helps

Vis = (1-discountfactor) *\
sp.Matrix(np.einsum(inv, [s,s_], Ris, [i, s_], [i, s]));

return sp.simplify(Vis)

With the help of the function compute_symbolic_statevalues, we can now compute the state values
for all four joint policies.

Mutual cooperation

The state value of the prosperous state, p, for the joint policy (c, c) is given by

statevalues_Vis_cc = compute_symbolic_statevalues(
Xisa_cc, TransitionTensor, RewardTensor)

Vcc_p = statevalues_Vis_cc[0, p]
Vcc_g = statevalues_Vis_cc[0, g]
Vcc_p

1.0𝑐 (𝑟 − 1)

Unilateral defection

The state value of the prosperous state, p, for the joint policy (d, c) is given by

statevalues_Vis_dc = compute_symbolic_statevalues(
Xisa_dc, TransitionTensor, RewardTensor)

Vdc_p = statevalues_Vis_dc[0, p]
Vdc_g = statevalues_Vis_dc[0, g]
Vdc_p

−0.5𝑐𝛾𝑝𝑟𝑞𝑐𝑟 + 1.0𝑐𝛾𝑝𝑟𝑟 + 0.5𝑐𝛾𝑞𝑐𝑟 − 1.0𝑐𝛾𝑟 − 0.5𝑐𝑞𝑐𝑟 + 1.0𝑐𝑟 + 1.0𝛾𝑚𝑝𝑟𝑞𝑐 + 1.0𝑚𝑞𝑐
2.0𝛾𝑝𝑟 + 1.0𝛾𝑞𝑐 − 2.0𝛾 + 2.0
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Unilateral cooperation

The state value of the prosperous state, p, for the joint policy (c, d) is given by

statevalues_Vis_cd = compute_symbolic_statevalues(
Xisa_cd, TransitionTensor, RewardTensor)

Vcd_p = statevalues_Vis_cd[0, p]
Vcd_g = statevalues_Vis_cd[0, g]
Vcd_p

−0.5𝑐𝛾𝑝𝑟𝑞𝑐𝑟 + 1.0𝑐𝛾𝑝𝑟𝑞𝑐 + 1.0𝑐𝛾𝑝𝑟𝑟 − 2.0𝑐𝛾𝑝𝑟 + 0.5𝑐𝛾𝑞𝑐𝑟 − 1.0𝑐𝛾𝑞𝑐 − 1.0𝑐𝛾𝑟 + 2.0𝑐𝛾 − 0.5𝑐𝑞𝑐𝑟 + 1.0𝑐𝑞𝑐 + 1.0𝑐𝑟 − 2.0𝑐 + 1.0𝛾𝑚𝑝𝑟𝑞𝑐 + 1.0𝑚𝑞𝑐
2.0𝛾𝑝𝑟 + 1.0𝛾𝑞𝑐 − 2.0𝛾 + 2.0

Mutual defection

The state value of the prosperous state, p, for the joint policy (d, d) is given by

statevalues_Vis_dd = compute_symbolic_statevalues(
Xisa_dd, TransitionTensor, RewardTensor)

Vdd_p = statevalues_Vis_dd[0, p]
Vdd_g = statevalues_Vis_dd[0, g]
Vdd_p

1.0𝑚𝑞𝑐 (𝛾𝑝𝑟 + 1)
𝛾𝑝𝑟 + 𝛾𝑞𝑐 − 𝛾 + 1

8.3.7 Critical curves

Finally, we can compute the critical conditions on the model parameters where the agents’ incentives
change. The three conditions are:

• Dilemma: The agents are indifferent between all cooperating and all defecting, 𝑣𝑐𝑐 = 𝑣𝑑𝑑,
• Greed: Each individual agent is indifferent between cooperating and defecting, given all others

cooperate, 𝑣𝑐𝑐 = 𝑣𝑑𝑐, and
• Fear: Each individual agent is indifferent between cooperating and defecting, given all agents

defect, 𝑣𝑐𝑑 = 𝑣𝑑𝑑.

Without greed the action situation becomes a coordination challenge between two pure equilibria of
mutual cooperation and mutual defection. Without greed and fear the only Nash equilibrium left is
mutual cooperation.
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Figure 8.4: Dimensions of a social dilemma with ordinal payoffs and Nash equilibira shown in boxes
from 03.02-StrategicInteractions.

Dilemma

The critical curve at which collapse avoidance becomes collectively optimal is obtained by setting
𝑣𝑐𝑐 = 𝑣𝑑𝑑. Solving for the collapse impact 𝑚 yields,

dilemma_m = sp.solve(Vdd_p - Vcc_p, m)[0]
dilemma_m

𝑐 (𝛾𝑝𝑟𝑟 − 𝛾𝑝𝑟 + 𝛾𝑞𝑐𝑟 − 𝛾𝑞𝑐 − 𝛾𝑟 + 𝛾 + 𝑟 − 1.0)
𝑞𝑐 (𝛾𝑝𝑟 + 1.0)

We verify that the dilemma condition does not depend on environmental state by computing it also
for the degraded state.

sp.solve(Vdd_g - Vcc_g, m)[0] - dilemma_m

0

Greed

The critical curve at which agents become indifferent to greed, i.e., exactly where cooperators are
indifferent to cooperation and defection, given all other actors cooperate, is obtained by setting 𝑣𝑐𝑐 =
𝑣𝑑𝑐. Solving for the collapse impact 𝑚 yields,

greed_m = sp.solve(Vdc_p - Vcc_p, m)[0]
greed_m
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0.5𝑐 (𝛾𝑝𝑟𝑞𝑐𝑟 + 2.0𝛾𝑝𝑟𝑟 − 4.0𝛾𝑝𝑟 + 𝛾𝑞𝑐𝑟 − 2.0𝛾𝑞𝑐 − 2.0𝛾𝑟 + 4.0𝛾 + 𝑞𝑐𝑟 + 2.0𝑟 − 4.0)
𝑞𝑐 (𝛾𝑝𝑟 + 1.0)

We verify that the greed condition does not depend on the environmental state by computing it also
for the degraded state.

sp.solve(Vdc_g - Vcc_g, m)[0] - greed_m

0

Fear

The critical curve at which actors are indifferent to fear, i.e., exactly where defectors are indifferent
to cooperation and defection, given all other actors defect, is obtained by setting 𝑣𝑐𝑑 = 𝑣𝑑𝑑. Solving
for the collapse impact 𝑚 yields,

fear_m = sp.solve(Vcd_g - Vdd_g, m)[0]
fear_m

0.5𝑐 (−𝛾𝑝𝑟𝑞𝑐𝑟 + 2.0𝛾𝑝𝑟𝑞𝑐 + 2.0𝛾𝑝𝑟𝑟 − 4.0𝛾𝑝𝑟 − 𝛾𝑞2
𝑐 𝑟 + 2.0𝛾𝑞2

𝑐 + 3.0𝛾𝑞𝑐𝑟 − 6.0𝛾𝑞𝑐 − 2.0𝛾𝑟 + 4.0𝛾 − 𝑞𝑐𝑟 + 2.0𝑞𝑐 + 2.0𝑟 − 4.0)
𝑞𝑐 (𝛾𝑝𝑟 + 1.0)

We verify that also the fear condition does not depend on the environmental state by computing it
also for the degraded state.

sp.solve(Vcd_g - Vdd_g, m)[0] - fear_m

0

8.3.8 Visualization

Having obtained symbolic expressions for the critical curves, we can now visualize them as a function
of the discount factor 𝛾, indicating how much the agents value future rewards.

Parameter values

Let us apply the model to the case of global sustainability. We set public goods synergy factors 𝑟 = 1.2
and the cost of cooperation to 5.

vr = 1.2
vc = 5

Regarding the transition probabilities, we apply the conversion rule developed in 02.04-
StateTransitions to set the collapse leverage, 𝑞𝑐 and the recovery probability 𝑝𝑟, in terms of
typical timescales. Under current business-as-usual policies, there are about 50 years left to avert the
collapse (Rockström et al., 2017). After a collapse, there is a potential lock-in into an unfavorable
Earth system state for a timescale up to millennia (Steffen et al., 2018). Interpreting a time step
as one year, we set the collapse leverage to 𝑞𝑟 = 1/50 = 0.02 and the recovery probability to
𝑝𝑟 = 1/10000 = 0.0001.
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vqc = 0.02
vqr = 0.0001

Final graphic

We convert the symbolic expressions to numerical functions using lambdify.

Fdilemma_m = sp.lambdify((r, cost, qc, pr, dcf), dilemma_m, 'numpy')
Fgreed_m = sp.lambdify((r, cost, qc, pr, dcf), greed_m, 'numpy')
Ffear_m = sp.lambdify((r, cost, qc, pr, dcf), fear_m, 'numpy')

dcf_values = np.linspace(0.95, 1.0, 100)

plt.plot(dcf_values, Fdilemma_m(vr, vc, vqc, vqr, dcf_values),
c='k', label='Dilemma')

plt.plot(dcf_values, Fgreed_m(vr, vc, vqc, vqr, dcf_values),
c='b', label='Greed')

plt.plot(dcf_values, Ffear_m(vr, vc, vqc, vqr, dcf_values),
c='g', label='Fear')

plt.fill_between(dcf_values, 0, 4, color='gray', alpha=0.4)

plt.annotate("Tragedy", (0.975, -1.6), ha='center', va='center')
plt.annotate("Coordination", (0.987, -4), ha='center', va='center')
plt.annotate("Comedy", (0.996, -6), ha='center', va='center')
plt.annotate("Collapse avoidance suboptimal",

(0.9999, 2.5), ha='right', va='center')

plt.legend(loc='center left'); plt.ylim(-7, 3); plt.xlim(0.955, 1.0);
plt.xlabel('Discount factor $\gamma$'); plt.ylabel('Collapse impact $m$');

This plot is a precise reproduction of the result by (Barfuss et al., 2020). It highlights that

• the same care for the future that makes individual decision-making apt for the long-term
also positively impacts collective decision-making.

• This care for the future alone can turn a tragedy into a comedy, where individual
incentives are fully aligned with the collective interest - completely resolving the social dilemma.
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• This is true, given the anticipated collapse impact is sufficiently severe. Thus, agents
need to consider the catastrophic impact and, at the same time, be immensely future-oriented.

• No other mechanism is required: Agents are anonymous, cannot reciprocate, and cannot
make any agreements.

8.4 Learning goals revisited

In this chapter,

• we introduced the concept of dynamic games and described the elements of a stochastic game.
• We applied the stochastic games framework to model human-environment interactions on the

question, how the individual care for future consequences and the fact that we all are embedded
into a shared environment impacts collective decision-making.

• We analyze the strategic interactions in this stochastic game model and found that caring for
the future can turn a tragedy into a commedy of the commons.
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Part III

Transformation Agency

184



In this last part, we cover transformation-agency or agent-based models. They operationalize trans-
formation knowledge, which is knowledge about how to move from the existing system to the
desired future. This knowledge includes concrete strategies and steps to take. In sustainability tran-
sitions, producing transformation knowledge could involve developing policy instruments, designing
new institutions, or implementing new technologies. Transformation knowledge is strongly associated
with agency and asks how to?.

Transformation-agency models (or agent-based models applied to sustainability transitions). Agent-
based modeling (ABM) can be viewed as a merger between dynamic systems and target equilib-
rium models, in that typical agent-based models are about the dynamics of agent behavior. However,
agent-based modeling in itself is diverse. Therefore, we can only provide a brief overview and specific
aspects of ABM in this part.

Figure 8.5: Three types of models based on three types of knowledge for transdisciplinary reserach

Specifically, we will cover

• Rule-based behavioral agency in agent-based models in Chapter 04.01
• Individual reinforcement learning in Chapter 04.02, and
• The non-linear dynamics of reinforcement learning in Chapter 04.03.

185

04.01-BehavioralAgency.ipynb
04.02-IndividualLearning.ipynb
04.03-LearningDynamics.ipynb


9 Behavioral agency

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

9.1 Motivation | Agent-based modeling of complex systems

The distinctive feature of the science of complex systems is the fascination that arises when the whole
becomes greater than the sum of its parts (Figure 9.1) and properties on the macro-level emerge
that do not exist on the micro-level.

Figure 9.1: Properties of a complex system

Complex systems thinking is instrumental in understanding the interactions between society and
nature (Figure 9.2).

Agent-based models capture the features of a complex system in the most direct way, in
that they model the behavior of individual agents and their interactions.

9.1.1 Learning goals

After this lecture, students will be able to:

1) Explain the history and rationale of agent-based modeling and generative social science
2) Explain the advantages and challenges of agent-based modeling
3) Simulate two famous agent-based models in Python
4) Implement animations in Python
5) Write object-oriented Python programs
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Figure 9.2: Complex Society-Nature Systems

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive
import matplotlib.animation as animation
from IPython.display import HTML
from functools import partial

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;

9.2 Overview | Generative social science

9.2.1 Essence of agent-based modeling

An agent-based model explicitly represents the individual units of the system and their repeated
interactions. Beyond this, no further assumptions are made in agent-based modeling (Izquierdo et
al., 2024).

Hence, agent-based modeling is a very flexible modeling framework.

You can model anything with an agent-based model, but you are not guaranteed to under-
stand it.

Adding complexity to your model allows you to study different phenomena. However, it can make
the analysis and understanding of the model more difficult, even with advanced mathematics. As a
result, agent-based models are usually created using a programming language and analyzed through
computer simulation. This method is so common that agent-based modeling and simulation are often
seen as synonymous (Izquierdo et al., 2024).
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9.2.2 Generative Social Science

The flexibility of ABM offers a generative approach to social science (Epstein, 1999). Explaining
the emergence of macroscopic societal regularities requires that one answers the following ques-
tion:

How could the decentralized local interactions of heterogeneous autonomous
agents generate the given regularity?

Generative social science is a research approach that uses computational models to generate and
explain complex social behaviors. It is characterized by a

• focus on explanation over prediction and
• its use of agent-based models to bridge the gap between micro and macro phenomena.

9.2.3 Features of agent-based modeling

Agent-based modeling allows us to cover some features that traditionally have been difficult to analyze
mathematically (Epstein, 1999; Izquierdo et al., 2024):

• Bounded Rationality, which has two components: bounded information and bounded com-
puting power. Typically, agents use more or less sophisticated rules or heuristics based on local
information. They do not have global information or infinite computational power.

• Autonomy and the micro-macro link. ABM is particularly well suited to studying how
global phenomena emerge from individual interactions and how these emergent global phenomena
may constrain and shape individuals’ actions. In agent-based models, there is no central, or “top-
down,” control over individual behavior. Micro and macro will typically co-evolve.

• Out-of-equilibrium dynamics. Dynamics are inherent to ABM. Running a simulation consists
of repeatedly applying the rules that define the model. Equilibria are never imposed a priori;
they may emerge as an outcome of the simulation, or they may not.

• Agents’ heterogeneity. Since agents are explicitly modeled, their diversity can vary according
to the modeler’s preferences. Agents may differ in myriad ways — genetically, culturally, by
social network, by preferences — all of which may change or adapt endogenously over time.
Representative or aggregated agent methods - common in dynamic systems or target equilibria
models - or not used.

• Local interactions and explicit space. The fact that agents and their environment are
represented explicitly in ABM makes it particularly straightforward and natural to model local
interactions.

• Interdependencies between processes (e.g., demographic, economic, biological, geographi-
cal, technological) that have traditionally been studied in different disciplines and are not often
analyzed together. An agent-based model does not restrict the type of rules that can be imple-
mented, so models can include rules linking disparate aspects of the world that are often studied
in different disciplines. This feature makes ABM particularly well suited to studying complex
Nature-Society systems.
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9.2.4 The generativist’s experiment

A given macroscopic regularity is to be explained by the canonical agent-based experiment as follows
(Epstein, 1999):

Situate an initial population of autonomous, heterogeneous agents in a relevant
spatial environment; - allow them to interact according to simple local rules, - and
thereby generate - or “grow” - the macroscopic regularity from the bottom up.

If you didn’t grow it, you didn’t explain its emergence. This generativist approach to social
science has been successfully applied to explain the following phenomena:

• economic classes (Axtell etl al. 1999)
• cooperation in spatial games (Lindgren and Nordahl, 1994; Epstein, 1998; Huberman and Glance,

1993; Nowak and May, 1992; Miller, 1996)
• voting behaviors (Kollman, Miller, and Page, 1992),
• demographic histories (Dean et al. 1999)
• trade networks (Tesfatsion, 1995; Epstein and Axtell, 1996),
• right-skewed wealth distributions (Epstein and Axtell, 1996)

… and many more!

9.2.5 Variants of agent-based modeling

As agent-based modeling is so flexible, various subcategories of models can be distinguished:

• Cellular automata
• Network models
• Learning and evolution models in games
• …

9.3 Example | Conway’s Game of Life

The Game of Life is a cellular automaton devised by the British mathematician John Horton
Conway in 1970.

A cellular automaton is a discrete model of computation consisting of a regular grid of cells, each in
one of a finite number of states (e.g., on and off).

The game of life is a very influential model in the field of complex systems (although Conway wasn’t
particularly proud of it)

See Inventing Game of Life (John Conway) - Numberphile for a brief backstory on the game of life.

9.3.1 Questions

The game of life is a comparably simple model to answer two very fundamental questions:

• How can something reproduce itself?
• How can a complex structure (like the mind) emerge from a basic set of rules?
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9.3.2 States

The cells of the cellular automaton can be in one of two states: dead or alive.

We can represent the state of a cell with a binary variable: 1 (black) for alive and 0 (white) for dead.
The state of the whole system can the be represented as follows:

ROWS, COLS = 40, 100 # define the size of the grid
grid = np.random.choice([0, 1], size=(ROWS, COLS), p=[0.7, 0.3]) #generate random

states↪

plt.imshow(grid, cmap='binary', interpolation='none') # plot the grid
plt.gca().set_xticks([]); plt.gca().set_yticks([]); # remove x and y ticks

Figure 9.3: A Game-of-Life grid

9.3.3 Dynamics

The dynamics of the game of life are governed by the following rules:

• Living cells with fewer than two living neighbors die
• Living cells with more than three living neighbors die
• Dead cells with exactly three neighbors become alive

We will use the matplotlib.animation.FuncAnimation function to animate the game of life in
Python. To do so, we need to implement the game’s rules in a function that updates the grid.

It must receive the number of the current frame of the animation plus possible further function
arguments. We supply it with an image argument variable representing the grid’s image. It must
return an iterable of artists, which the matplotlib.animation.FuncAnimation will use to update
the plot.

# Function to update the grid based on the Game of Life rules
def update_grid(frame, image):

global grid # required to access the variable inside the function
new_grid = grid.copy()

for i in range(0, ROWS):
for j in range(0, COLS):

neighbors_sum = ( # the % sign is a modulo division, i.e., 13 % 13 = 0
grid[(i - 1) % ROWS, (j - 1) % COLS] + grid[(i - 1) % ROWS, j] +
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grid[(i - 1) % ROWS, (j + 1) % COLS] + grid[i, (j - 1) % COLS] +
grid[i, (j + 1) % COLS] + grid[(i + 1) % ROWS, (j - 1) % COLS] +
grid[(i + 1) % ROWS, j] + grid[(i + 1) % ROWS, (j + 1) % COLS])

# the rules of the game
if grid[i, j] == 1 and (neighbors_sum < 2 or neighbors_sum > 3):

new_grid[i, j] = 0
elif grid[i, j] == 0 and neighbors_sum == 3:

new_grid[i, j] = 1

grid = new_grid
image.set_array(grid)
return image, # must return an iterable of artists

With the update_grid function in place, we can now create the animation using the FuncAnimation
function. The %%caputure magic command is used to suppress the output of the cell below, as we
will call the animation separately.

%%capture
# Set up the Matplotlib figure and axis
fig, ax = plt.subplots(figsize=(16,9))
im = ax.imshow(grid, cmap='binary', interpolation='none')
ax.set_xticks([]); ax.set_yticks([])

# Create animation
ani = animation.FuncAnimation(fig, partial(update_grid, image=im),

frames=150, interval=150)

Finally, we can display the animation using the HTML function from the IPython.display module.

# Display the animation using HTML
# HTML(ani.to_jshtml())

9.3.4 Emerging structures

Despite the simplicity of the rules, complex structures of species moving and reproducing can
emerge from these rules, despite them not having any concept of movement or reproduction.

See, for example, the Epic Conway’s Game of Life or Life in life videos.

9.3.5 Impact

Although the rules are incredibly simple, it is impossible to say whether a given configuration persists
or eventually dies out. There are fundamental limits to prediction.

It was shown that you can do any form of computation (that you can do on a regular computer) with
the game of life.

Complex behavior does not require complicated rules. Complex behavior can emerge from simple rules.
This realization has been a key insight of complexity sciences and has shaped the way complexity
science is done today.
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9.4 Example | Schelling’s segregation model

The second example model studies the phenomenon of racially segregated neighborhoods. The content
here is heavily inspired by QuantEcon’s Quantitative Economics with Python.

9.4.1 Questions

We observe racially segregated neighborhoods.

Does that mean that all residents are racists?

9.4.2 Context

In 1969, Thomas C. Schelling developed a simple but striking model of racial segregation.

His model studies the dynamics of racially mixed neighborhoods.

Like much of Schelling’s work, the model shows how local interactions can lead to surprising aggregate
structure.

In particular, it shows that relatively mild preference for neighbors of similar race can lead in aggregate
to the collapse of mixed neighborhoods, and high levels of segregation.

In recognition of this and other research, Schelling was awarded the 2005 Nobel Prize in Economic
Sciences (joint with Robert Aumann).

9.4.3 The Model

We will cover a variation of Schelling’s model that is easy to program and captures the main idea.

Set-Up

Suppose we have two types of people: orange people and green people.

For the purpose of this lecture, we will assume there are 250 of each type.

These agents all live on a single-unit square.

The location of an agent is just a point (𝑥, 𝑦), where 0 < 𝑥, 𝑦 < 1.

Preferences

We will say that an agent is happy if half or more of her 10 nearest neighbors are of the same type.

Here ‘nearest’ is in terms of Euclidean distance.

An agent who is not happy is called unhappy.

An important point here is that agents are not averse to living in mixed areas.

They are perfectly happy if half their neighbors are of the other color.
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Behavior

Initially, agents are mixed together (integrated).

In particular, the initial location of each agent is an independent draw from a bivariate uniform
distribution on 𝑆 = (0, 1)2.

Now, cycling through the set of all agents, each agent is now given the chance to stay or move.

We assume that each agent will stay put if they are happy and move if unhappy.

The algorithm for moving is as follows

1. Draw a random location in 𝑆

2. If happy at the new location, move there

3. Else, go to step 1

In this way, we cycle continuously through the agents, moving as required.

We continue to cycle until no one wishes to move.

9.4.4 Implementation

We use object-oriented programming (OOP) to model agents as objects.

OOP is a programming paradigm based on the concept of objects, which can contain data and code: -
data in the form of fields (often known as attributes or properties), and - code in the form of procedures
(often known as methods).

Agent class

A class defines how an object will work. Typically, the class will define several methods that operate
on instances of the class. A key method is the __init__ method, which is called when an object is
created.

class Agent:

# The init method is called when the object is created.
def __init__(self, type, num_neighbors, require_same_type):

self.type = type
self.draw_location()
self.num_neighbors = num_neighbors
self.require_same_type = require_same_type

def draw_location(self):
self.location = np.random.uniform(0, 1), np.random.uniform(0, 1)

def get_distance(self, other):
"Computes the Euclidean distance between self and another agent."
a = (self.location[0] - other.location[0])**2
b = (self.location[1] - other.location[1])**2
return np.sqrt(a + b)
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def number_same_type(self, agents):
"Number of neighbors of same type."
distances = []
# distances is a list of pairs (d, agent), where d is the distance from
# agent to self
for agent in agents:

if self != agent:
distance = self.get_distance(agent)
distances.append((distance, agent))

# == Sort from smallest to largest, according to distance == #
distances.sort()
# == Extract the neighboring agents == #
neighbors = [agent for d, agent in distances[:self.num_neighbors]]
# == Count how many neighbors have the same type as self == #
return sum(self.type == agent.type for agent in neighbors)

def happy(self, agents):
"True if a sufficient number of nearest neighbors are of the same type."
num_same_type = self.number_same_type(agents)
return num_same_type >= self.require_same_type

def update(self, agents):
"If not happy, then randomly choose new locations until happy."
while not self.happy(agents):

self.draw_location()

Testing the agent class:

A = Agent(0, num_neighbors=4, require_same_type=2)
type(A)

__main__.Agent

A.location

(0.9530720480796, 0.566243724536969)

Creating a list of agents:

np.random.seed(4)
agents = [Agent(0, 4, 2) for i in range(100)]
agents.extend(Agent(1, 4, 2) for i in range(100))
len(agents)

200

Is agent three happy?
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a3 = agents[3]
a3.happy(agents), a3.location

(False, (0.9762744547762418, 0.006230255204589863))

Let’s let agent three update its position:

a3.update(agents)

agents[3].happy(agents), agents[3].location

(True, (0.06780815958339637, 0.961674586087924))

Observation function

We implement a function to plot the distribution of agents.

def plot_distribution(agents, cycle_num, ax=None):
"Plot the distribution of agents after cycle_num rounds of the loop."
x_values_0, y_values_0 = [], []
x_values_1, y_values_1 = [], []
# == Obtain locations of each type == #
for agent in agents:

x, y = agent.location
if agent.type == 0:

x_values_0.append(x)
y_values_0.append(y)

else:
x_values_1.append(x)
y_values_1.append(y)

if ax is None: fig, ax = plt.subplots(figsize=(4, 4))
plot_args = {'markersize': 4, 'alpha': 0.6}
# ax.set_facecolor('azure')
ax.plot(x_values_0, y_values_0, 'o', markerfacecolor='orange', **plot_args)
ax.plot(x_values_1, y_values_1, 'o', markerfacecolor='green', **plot_args)
ax.set_xticks([]); ax.set_yticks([])
ax.set_title(f'Cycle {cycle_num}')

Testing the observation function,

num_of_type_0 = 250
num_of_type_1 = 250
num_neighbors = 10 # Number of agents regarded as neighbors
require_same_type = 5 # Want at least this many neighbors to be same type

# == Create a list of agents == #
agents = [Agent(0, num_neighbors, require_same_type) for i in range(num_of_type_0)]
agents.extend(Agent(1, num_neighbors, require_same_type) for i in

range(num_of_type_1))↪
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plot_distribution(agents, 0)

Figure 9.4: Initial distribution of agents.

Simulation run

np.random.seed(10) # For reproducible random numbers

# == Main == #
num_of_type_0 = 250
num_of_type_1 = 250
num_neighbors = 10 # Number of agents regarded as neighbors
require_same_type = 5 # Want at least this many neighbors to be same type

# == Create a list of agents == #
agents = [Agent(0, num_neighbors, require_same_type) for i in range(num_of_type_0)]
agents.extend(Agent(1, num_neighbors, require_same_type) for i in

range(num_of_type_1))↪

count = 1
# == Loop until none wishes to move == #
fig, axs = plt.subplots(2,3, figsize=(13, 6))
axs.flatten()

while True:
print('Entering loop ', count)
plot_distribution(agents, count, axs.flatten()[count-1])
count += 1
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# Update and check whether everyone is happy
no_one_moved = True
for agent in agents:

old_location = agent.location
agent.update(agents)
if agent.location != old_location:

no_one_moved = False
if no_one_moved:

break

print('Converged, terminating.')
plt.tight_layout()

Entering loop 1
Entering loop 2
Entering loop 3
Entering loop 4
Entering loop 5
Entering loop 6
Converged, terminating.

Figure 9.5: A simulation run of Schelling’s model.

In this instance, the program terminated after 6 cycles through the set of agents, indicating that all
agents had reached a state of happiness.

9.4.5 Interpretation

What is striking about the pictures is how rapidly racial integration breaks down.

This is despite the fact that people in the model don’t actually mind living mixed with the other
type.

Even with these preferences, the outcome is a high degree of segregation.
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9.5 Challenges of agent-based modeling

• Performance Limitations. The execution speed of ABMs can be slow, which can be a limita-
tion for extensive simulations.

• Transparency and Reproducibility. Providing a clear and accessible description is challeng-
ing due to model complexity.

• Data Parameters and Validation. Getting empirical data and validating models that may
simulate unobservable associations is challenging.

• Arbitrariness and Parameterization. The many parameters that need to be set can lead to
a high degree of arbitrariness.

• Behavior modeling. There are endless possibilities to design plausible behavioral rules. A
sensitivity analysis is difficult.

Up next

• Reinforcement learning as a principled model for behavior to counter some arbitrariness in
parameterization behavioral rules.

• Synthesis: Collective reinforcement learning dynamics to counter performance limitations and
a lack of transparency and reproducibility.

9.6 Learning goals revisited

In this chapter,

we covered the history and rationale of agent-based modeling: generative social science.

We covered the advantages (flexibility and expressiveness) and challenges (transparency, arbi-
trariness, performance) of agent-based modeling

We implemented and simulated two famous agent-based models in Python: Conway’s Game of Life
and Schelling’s segregation model.

We implement animations in Python using the matplotlib.animations.FuncAnimation function.

We wrote Schelling’s segregation model as an object-oriented program.
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10 Individual learning

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

10.1 Motivation

Give a man a fish, and he’ll eat for a day

Teach a man to fish, and he’ll eat for a lifetime

Give a man a taste for fish, and he’ll eat even if conditions change. [source]

In this chapter, we will introduce the basics of temporal-difference reward-prediction reinforcement
learning.

10.1.1 Using behavioral theories in ABMs is challenging

General agent-based modeling is a flexible tool for studying different theories of human behavior.
However, the social and behavioral sciences are not known for their tendency to integrate. Knowledge
about human behavior is fragmented into many different, context-specific, and often not
formalized theories. For example, in an attempt to order and use this knowledge for sustainability
science, Constantino and colleagues presented a selection of 32 behavioral theories (Constantino et al.,
2021).

The many behavioral theories pose a significant challenge for general agent-based modeling when
it comes to incorporating human decision-making into models of Nature-society systems (Schlüter et
al., 2017):
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1) Fragmentation of theories: A vast array of theories on human decision-making is scattered
across different disciplines, making it difficult to navigate and select relevant theories. Each
theory often focuses on specific aspects of decision-making, leading to fragmented knowledge.

2) Incomplete theories: The degree of formalization varies across theories. Many decision-
making theories are incomplete or not fully formalized, requiring modelers to fill logical gaps
with assumptions to make simulations work. This step introduces more degrees of freedom and
possibly arbitrariness into the modeling process.

3) Correlation-based theories: Many theories focus on correlations rather than causal mech-
anisms, essential for dynamic modeling. This requires modelers to make explicit assumptions
about causal relationships - introducing more degrees of freedom and possibly arbitrariness into
the modeling process.

4) Context-dependent theories: The applicability of theories can vary greatly depending on
the context, which adds complexity to their integration into models.

10.1.2 Reinforcement learning offers a principled take

Reinforcement learning (RL) offers a general prototype model for intelligent & adaptive decision-
making in agent-based models.

Principle

“Do more of what makes you happy.”

We do not need to specify the behavior of an agent directly.

Instead, we specify what an agent wants and how it learns. Crucially, how it learns does not
depend on the details of the environment model. It is a more general process, applicable across
different environments.

Then, it learns for itself what to do and we study the learning process and the learned behaviors.

This approach is particularly valuable for studying human-environment systems when the deci-
sion environment changes through a policy intervention or a global change process, like climate
change or biodiversity loss. If we had specified the agent’s behavior directly, the agent’s behavior
could not change when the environment changes. In contrast, if we specify the underlying agent’s
goal, we can study how the agent’s behavior changes when the environment changes. Reinforcement
learning agents can learn while interacting with the environment.

10.1.3 An integrating platform for cognitive mechanisms

RL, broadly understood, offers an interdisciplinary platform for integrating cognitive mechanisms
into ABMs. It offers a comprehensive framework for studying the interplay among learning (adaptive
behavior), representation (beliefs), and decision-making (actions) (Botvinick et al., 2020).
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Figure 10.1: RL-based frameworks with cognitive mechanisms

Collective or multi-agent reinforcement learning is a natural extension of RL to study the emerging
collective behavior of multiple agents in dynamic environments. It allows for formulating hypotheses
on how different cognitive mechanisms affect collective behavior in dynamic environments
(Barfuss, Flack, et al., 2024).

RL is also an interdisciplinary endeavor, studied in Psychology, Neuroscience, Behavioral eco-
nomics, Complexity science, and Machine learning.

Figure 10.2: Reinforcement learning in the brain

Figure 10.2 shows the remarkable analogy between the firing patterns of dopamine neurons
in the brain and the prediction errors in a reinforcement learning simulation.

Figure 10.2 (a-c) shows prediction errors in a Pavlovian RL conditioning task simulation. A conditional
stimulus (CS) is presented randomly, followed 2 seconds later by a reward (Unconditional Stimulus -
US). (a) In the early training phase, the reward is not anticipated, leading to prediction errors when
the reward is presented. As learning occurs, these prediction errors begin to affect prior events in the
trial (examples from trials 5 and 10) because predictive values are learned. (b) After learning, the
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previously unexpected reward no longer creates a prediction error. Instead, the conditional stimulus
now causes a prediction error when it occurs unexpectedly. (c) When the reward is omitted when
expected, it results in a negative prediction error, signaling that what happened was worse than
anticipated.

Figure 10.2 (d–f) Firing patterns of dopamine neurons in monkeys engaged in a similar instrumental
conditioning task [SchultzEtAl1997]. Each raster plot shows action potentials (dots) with different
rows for different trials aligned with the cue (or reward) timing. Histograms show combined activity
across the trials below. (d) When a reward is unexpectedly received, dopamine neurons fire rapidly. (e)
After conditioning with a visual cue (which predicted a food reward if the animal performed correctly),
the reward no longer triggers a burst of activity; now, the burst happens at the cue’s presentation. (f)
If the food reward is omitted unexpectedly, dopamine neurons exhibit a distinct pause in firing, falling
below their typical rate.

Source of confusion. Because of its broad scope and interdisciplinary nature, simply the phrase
“reinforcement learning” can mean different things to different people. To mitigate this possible
source of confusion, it is good to acknowledge that RL can refer to a model of human learning, an
optimization method, a problem description, and a field of research.

10.1.4 Learning goals

After this chapter, students will be able to:

• Explain why reinforcement learning is valuable in models of human-environment interactions
• Implement and apply the different elements of the multi-agent environment framework, including

a temporal-different learning agent.
• Explain and manage the trade-off between exploration and exploitation.
• Visualize the learning process
• Use the Python library pandas to manage data
• Refine their skills in object-oriented programming

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive
import matplotlib.animation as animation
from IPython.display import HTML
import sympy as sp
from copy import deepcopy

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (15, 4)
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;
plt.rcParams['figure.dpi'] = 140

10.2 Elements of the multi-agent environment interface

Generally, making sense of an agent without its environment is difficult, and vice versa.
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Figure 10.3: Reinforcement learning in the multi-agent environment interface

Interface

At the interface between agents and the environment are

• each agent’s set of (conceivable) actions - from agents to environment,
• extrinsic reward signals - a single number from environment to each agent,
• possibly observation signals - from environment to agents.

Note: In general, the environment is composed of the natural and the social environment.

def interface_run(agents, env, NrOfTimesteps):
"""Run the multi-agent environment for several time steps."""

observations = env.observe()

for t in range(NrOfTimesteps):

actions = [agent.act(observations[i])
for i, agent in enumerate(agents)]

next_observations, rewards, info = env.step(actions)

for i, agent in enumerate(agents):
agent.update(observations[i], actions[i], rewards[i],

next_observations[i])↪

observations = next_observations

Environment

The environment delivers extrinsic rewards (motivations) to the agents based on the agents’ chosen
actions (choices). It may contain environmental states, which may not be fully observable to the
agents
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The most common environment classes:

Agents Environment Observation
Multi-armed bandit one no states -
Normal-form game multiple no states -
Markov decision
process

one multiple states full

Stochastic/Markov
games

multiple multiple states full

Partially observable
Markov decision
process

one multiple states partial

Partially observable
stochastic games

multiple multiple states partial

In all cases, reward signals may be stochastic and or multi-dimensional.

class Environment:
"""Abstract environment class."""

def obtain_StateSet(self):
"""Default state set representation `state_s`."""
return [str(s) for s in range(self.Z)]

def obtain_ActionSets(self):
"""Default action set representation `action_a`."""
return [str(a) for a in range(self.M)]

def step(self,
jA # joint actions
) -> tuple: # (observations_Oi, rewards_Ri, info)

"""
Iterate the environment one step forward.
"""
# choose a next state according to transition tensor T
tps = self.TransitionTensor[tuple([self.state]+list(jA))].astype(float)
next_state = np.random.choice(range(len(tps)), p=tps)

# obtain the current rewards
rewards = self.RewardTensor[tuple([slice(self.N),self.state]

+list(jA)+[next_state])]

# advance the state and collect info
self.state = next_state
obs = self.observe()

# report the true state in the info dict
info = {'state': self.state}

return obs, rewards.astype(float), info

def observe(self):
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"""Observe the environment."""
return [self.state for _ in range(self.N)]

Agents

Agents act (oftentimes to reach a goal). We need to specify their

• Actions, describing which choices are available to the agent.
• Goal, describing what an agent wants (in the long run). They may contain intrinsic motivations.
• Representation, e.g., defining upon which conditions agents select actions (e.g., history of past

actions in multi-agent situations).
• Value beliefs (value functions), capturing what is good for the agent regarding its goal in the

long run.
• Behavioral rule (policy, strategy), defining how to select actions.
• Learning rule, describing how value beliefs are updated in light of new information.
• (optionally), a model of the environment and rewards. Models are used for planning, i.e.,

deciding on a behavioral rule by considering possible future situations before they are actually
experienced.

class BehaviorAgent:

def __init__(self, policy):
self.policy_Xoa = policy / policy.sum(-1, keepdims=True)
self.ActionIxs = range(self.policy_Xoa.shape[1])

def act(self, obs):
return np.random.choice(self.ActionIxs, p=self.policy_Xoa[obs])

def update(self, *args, **kwargs):
pass

10.3 Example | Risk Reward Dilemma

Figure 10.4: Risk Reward Dilemma
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class RiskRewardDilemma(Environment):
"""A simple risk-reward dilemma environment."""

def obtain_StateSet(self):
return ['p', 'd'] # prosperous, degraded

def obtain_ActionSets(self):
return [['c', 'r']] # cautious, risky

10.3.1 Transitions | Environmental dynamics

The environmental dynamics, i.e., the transitions between environmental state contexts are mod-
eled by two parameters: a collapse probability, 𝑝𝑐, and a recovery probability, 𝑝𝑟.

pc, pr = sp.symbols('p_c p_r')
pc

𝑝𝑐

p = RiskRewardDilemma().obtain_StateSet().index('p')
d = RiskRewardDilemma().obtain_StateSet().index('d')
c = RiskRewardDilemma().obtain_ActionSets()[0].index('c')
r = RiskRewardDilemma().obtain_ActionSets()[0].index('r')
p,d,c,r

(0, 1, 0, 1)

We implement the transitions as a three-dimensional array or tensors, with dimensions 𝑍 × 𝑀 × 𝑍,
where 𝑍 is the number of states and 𝑀 is the number of actions.

T = np.zeros((2,2,2), dtype=object)

The cautious action guarantees to remain in the prosperous state, 𝑇 (p, c, p) = 1. Thus, the agent can
avoid the risk of environmental collapse by choosing the cautious action, 𝑇 (p, c, d) = 0.

T[p,c,d] = 0
T[p,c,p] = 1

The risky action risks the collapse to the degraded state, 𝑇 (p, r, d) = 𝑝𝑐, with a collapse probability 𝑝𝑐.
Thus, with probability 1 − 𝑝𝑐, the environment remains prosperous under the risky action, 𝑇 (p, r, p) =
1 − 𝑝𝑐.

T[p,r,d] = pc
T[p,r,p] = 1-pc

At the degraded state, recovery is only possible through the cautious action, 𝑇 (d, c, p) = 𝑝𝑟, with
recovery probability 𝑝𝑟. Thus, with probability 1 − 𝑝𝑟, the environment remains degraded under the
cautious action, 𝑇 (d, c, d) = 1 − 𝑝𝑟.
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T[d,c,p] = pr
T[d,c,d] = 1-pr

Finally, the risky action at the degraded state guarantees a lock-in in the degraded state, 𝑇 (d, r, d) = 1.
Thus, the environment cannot recover from the degraded state under the risky action, 𝑇 (d, r, p) = 0.

T[d,r,p] = 0
T[d,r,d] = 1

Last, we make sure that our transition tensor is normalized, i.e., the sum of all transition probabilities
from a state-action pair to all possible next states equals one, ∑𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′) = 1.

T.sum(-1)

array([[1, 1],
[1, 1]], dtype=object)

All together, the transition tensor looks as follows:

sp.Array(T)

[[ 1 0
1 − 𝑝𝑐 𝑝𝑐

] [𝑝𝑟 1 − 𝑝𝑟
0 1 ]]

Recap | Substituting parameter values. In this chapter, we defined the transition and reward
tensors as general numpy arrays with data types object, which we filled with symbolic expressions from
sympy. To manipulate and substitute these expressions, we can use the sympy.subs method, however,
not directly on the numpy array. Instead, we define a helper function substitute_in_array that
takes a numpy array and a dictionary of substitutions and returns a new array with the substitutions
applied.

def substitute_in_array(array, subs_dict):
result = array.copy()
for index,_ in np.ndenumerate(array):

if isinstance(array[index], sp.Basic):
result[index] = array[index].subs(subs_dict)

return result

To make this work, it seems to be of critical importance that the subsitution dictionary is
given as a dictionary in the form of {<symbol_variable>: <subsitution>, ...} and not as
dict(<symbol_variable>=<subsitution>, ...). For example,

substitute_in_array(T, {pc: 0.1, pr: 0.05}).astype(float)

array([[[1. , 0. ],
[0.9 , 0.1 ]],

[[0.05, 0.95],
[0. , 1. ]]])
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With the help of the substitue_in_array function we give the risk-reward dilemma class its environ-
mental dynamics:

def create_TransitionTensor(self):
"""Create the transition tensor."""
return substitute_in_array(T, {pc: self.pc, pr: self.pr}).astype(float)

RiskRewardDilemma.create_TransitionTensor = create_TransitionTensor

10.3.2 Rewards | Short-term welfare

The rewards or welfare the agent receives represent the ecosystem services the environment provides.
It is modeled by three parameters: a safe reward 𝑟𝑠, a risky reward 𝑟𝑟 > 𝑟𝑠, and a degraded reward
𝑟𝑑 < 𝑟𝑠. We assume the following default values,

rs, rr, rd = sp.symbols('r_s r_r r_d')

We implement the rewards as a four-dimensional array or tensor, with dimensions 𝑁 × 𝑍 × 𝑀 × 𝑍,
where 𝑁 = 1 is the number of agents, 𝑍 is the number of states and 𝑀 is the number of actions. The
additional agent dimension is necessary to accommodate multi-agent environments.

R = np.zeros((1,2,2,2), dtype=object)

The cautious action at the prosperous state guarantees the safe reward, 𝑅(p, c, p) = 𝑟𝑠,

R[0,p,c,p] = rs

The risky action at the prosperous leads to the risky reward if the environment does not collapse,
𝑅(p, r, p) = 𝑟𝑟,

R[0,p,r,p] = rr

Yet, whenever the environment enters, remains, or leaves the degraded state, it provides only the
degraded reward 𝑅(d, ∶, ∶) = 𝑅(∶, ∶, d) = 𝑟𝑑, where ∶ denotes all possible states and actions.

R[0,d,:,:] = R[0,:,:,d] = rd

Together, the reward tensor looks as follows:

sp.Array(R)

[[[𝑟𝑠 𝑟𝑑
𝑟𝑟 𝑟𝑑

] [𝑟𝑑 𝑟𝑑
𝑟𝑑 𝑟𝑑

]]]

Again, we use the substitute_in_array function to give the risk-reward dilemma class its reward
function:
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def create_RewardTensor(self):
"""Create the reward tensor."""
return substitute_in_array(

R, {rr: self.rr, rs: self.rs, rd: self.rd}).astype(float)

RiskRewardDilemma.create_RewardTensor = create_RewardTensor

10.3.3 Init method

def __init__(self, CollapseProbability, RecoveryProbability,
RiskyReward, SafeReward, DegradedReward, state=0):

self.N = 1; self.M = 2; self.Z = 2

self.pc = CollapseProbability
self.pr = RecoveryProbability
self.rr = RiskyReward
self.rs = SafeReward
self.rd = DegradedReward

self.StateSet = self.obtain_StateSet()
self.ActionSets = self.obtain_ActionSets()
self.TransitionTensor = self.create_TransitionTensor()
self.RewardTensor = self.create_RewardTensor()

self.state = state
RiskRewardDilemma.__init__ = __init__

Basic testing

env = RiskRewardDilemma(0.11, 0.4, 1.0, 0.8, 0.0)
env.TransitionTensor

array([[[1. , 0. ],
[0.89, 0.11]],

[[0.4 , 0.6 ],
[0. , 1. ]]])

env.RewardTensor

array([[[[0.8, 0. ],
[1. , 0. ]],

[[0. , 0. ],
[0. , 0. ]]]])
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env.step([1])

([0], array([1.]), {'state': 0})

10.3.4 Testing the interface

agent = BehaviorAgent(policy=np.ones((2,2)))
env = RiskRewardDilemma(0.2, 0.1, 1.0, 0.8, 0.0)
interface_run([agent], env, 10)

Obviously, this is not very insightful. We need to track the learning process.

We need to track the learning process. We can do this by storing the actions, observations, and rewards
in a pandas DataFrame. Pandas is a powerful data manipulation library in Python that provides data
structures and functions to work with structured data. We will store the data of each time step into
a row and its attributes into a set of respective columns of the DataFrame.

def interface_run(agent, env, NrOfTimesteps):
"""Run the multi-agent environment for several time steps."""

columns = ["action", "observation", "reward"]
df = pd.DataFrame(index=range(NrOfTimesteps), columns=columns)

observations = env.observe()

for t in range(NrOfTimesteps):

action = agent.act(observations[0])

next_observations, rewards, info = env.step([action])

agent.update(observations[0], action,
rewards[0], next_observations[0])

df.loc[t] = (action, observations[0], rewards[0])

observations = next_observations

return df

df = interface_run(agent, env, 25)
df.tail()

action observation reward
20 0 0 0.8
21 0 0 0.8
22 0 0 0.8
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action observation reward
23 1 0 1.0
24 1 0 0.0

def plot_ActionsRewardsObservations(df):
fig, axes = plt.subplots(3,1, figsize=(10,5))

axes[0].plot(df.action, 'o', label='Agent 0')
axes[0].set_ylabel('Action')
axes[0].set_yticks([0, 1])
axes[0].set_yticklabels([env.ActionSets[0][0], env.ActionSets[0][1]])

axes[1].plot(df.reward, 'o', label='Agent 0');
axes[1].set_ylabel('Reward')

axes[2].plot(df.observation, 'o', label='Agent 0');
axes[2].set_ylabel('Observation')
axes[2].set_yticks([0, 1])
axes[2].set_yticklabels([env.StateSet[0], env.StateSet[1]]);

df = interface_run(agent, env, 25); plot_ActionsRewardsObservations(df)

Figure 10.5: Action-Reward-Observation Dynamics

10.4 Reinforcement learning agent

Agents act (oftentimes to reach a goal). We need to specify their

• Actions, describing which choices are available to the agent.
• Goal, describing what an agent wants (in the long run). They may contain intrinsic motivations.

211



• Representation, e.g., defining upon which conditions agents select actions (e.g., history of past
actions in multi-agent situations).

• Value beliefs (value functions), capturing what is good for the agent regarding its goal in the
long run.

• Behavioral rule (policy, strategy), defining how to select actions.
• Learning rule, describing how value beliefs are updated in light of new information.
• (optionally), a model of the environment and rewards. Models are used for planning, i.e.,

deciding on a behavioral rule by considering possible future situations before they are actually
experienced.

Agents act (oftentimes to reach a goal). As in Lecture 03.01-SequentialDecision, the agent aims to
maximize the discounted sum of future rewards,

𝐺𝑡 = (1 − 𝛾)
∞

∑
𝜏=0

𝛾𝜏𝑅𝑡+𝜏 ,

where 1 − 𝛾 is a normalizing factor and 𝑅𝑡+𝜏+1 is the reward received at time step 𝑡 + 𝜏 + 1.
However, in contrast to Lecture 03.01-SequentialDecision, we assume that the agent does not know
the environment’s dynamics and rewards. Instead, the agent learns about the environment
while interacting with it.

The challenge is that actions may have delayed and uncertain consequences.

Delayed consequences mean that an action may influence the environmental state, which, in turn,
influences the reward the agent receives at a later time step. For example, in our risk-reward dilemma,
opting for a sustainable policy may initially reduce the agent’s immediate reward but ensures a com-
parably higher long-term welfare. Uncertain consequences refer to the stochasticity in the envi-
ronmental transitions (and possibly the reward signals themselves). For example, in our risk-reward
dilemma, the risky action in the prosperous state may lead to a high reward but may also cause a tran-
sition to the degraded state. Moreover, uncertainty may also refer to the fact that the environmental
transition dynamics may change over time.

Thus, the agent can’t just try each action in each state once and then immediately know which course
of action is best. It must learn the best course of action over successive trials, each of which gives
possible noisy data.

We start implement the learning class by defining __init__ method.

class Learner():
"""A simple reinforcement learning agent."""

def __init__(self, ValueBeliefs_Qoa,
DiscountFactor, LearningRate, ChoiceIntensity):

self.DiscountFactor = self.df = DiscountFactor
self.LearningRate = self.lr = LearningRate
self.ChoiceIntensity = self.ci = ChoiceIntensity

self.ValueBeliefs_Qoa = ValueBeliefs_Qoa

self.ActionIxs = range(ValueBeliefs_Qoa.shape[1])
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The agent receives the following parameters: the initial value beliefs ValueBeliefs_Qoa, the discount
factor DiscountFactor, the learning rate LearningRate, and the choice intensity ChoiceIntensity.
Furthermore, we give the agent an attribute ActionIxs that stores the indices of the possible actions.
This will be helpful when selecting actions.

10.4.1 Value beliefs

The general strategy we focus on to solve the challenges of delayed and uncertain consequences is to
let the agent learn value beliefs. Value beliefs are the agent’s estimates of the long-term value of
each action 𝑎 in each state 𝑠. The agent then uses these value beliefs to select actions. These estimates
are also often called Q values. You may think of the quality of an action 𝑎 in state 𝑠 which tells the
agents Which action to select in which state.

For example, in our risk-reward dilemma, we can represent the agent’s value beliefs by

ValueBeliefs_Qoa = 10 * np.random.rand(2,2)
ValueBeliefs_Qoa

array([[8.83140215, 5.58254363],
[8.59330674, 1.20765508]])

The challenge of uncertain consequences in then solved by an appropriate behavioral rule which
handles the so-called exploration-exploitation trade-off

The challenge of delayed consequences is solved by the learning rule, which updates the value beliefs
in light of new information using the Bellman equation, as in Lecture 03.01-SequentialDecisions.

10.4.2 Behavioral rule | Exploration-exploitation trade-off

The exploration-exploitation trade-off poses a fundamental problem for decision-making
under uncertainty.

Under too much exploitation, the agent may pick an action that is not optimal, as it has not yet
sufficiently explored all possible actions. It acts under the false belief that its current value beliefs
are already correct or optimal. Thus, it loses out on possible rewards it would have gotten if it had
explored more and discovered that a different course of action is better.

Under too much exploration, the agent may continue to try all actions to gain as much information
about the transitions and reward distributions as possible. It is losing out because it never settles on
the best course of action, continuing to pick all actions until the end.

What is needed is a behavioral rule that balances exploitation and exploration to explore
enough to find the best option but not too much so that the best option is exploited as much as
possible.

We use the so-called softmax function,

𝑥(𝑠, 𝑎) = exp𝛽𝑄(𝑠, 𝑎)
∑𝑏∈𝒜 exp𝛽𝑄(𝑠, 𝑏) ,

which converts any set of value beliefs into probabilities that sum to one.

The higher the relative value belief, the higher the relative probability.
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def obtain_softmax_probabilities(ChoiceIntensity, ValueBeliefs):
expValueBeliefs = np.exp(ChoiceIntensity*np.array(ValueBeliefs))
return expValueBeliefs / expValueBeliefs.sum(-1, keepdims=True)

The softmax function contains a parameter 𝛽, denoting the choice intensity (sometimes called inverse
temperature, that determines how exploitative (or greedy) the agent is.

When 𝛽 = 0, arms are chosen entirely at random with no influence of the Q values. This is super
exploratory, as the agent continues to choose all arms irrespective of observed rewards.

obtain_softmax_probabilities(0, ValueBeliefs_Qoa)

array([[0.5, 0.5],
[0.5, 0.5]])

As 𝛽 increases, there is a higher probability of picking the arm with the highest Q value. This is
increasingly exploitative (or ‘greedy’).

obtain_softmax_probabilities(1, ValueBeliefs_Qoa)

array([[9.62632074e-01, 3.73679265e-02],
[9.99380298e-01, 6.19702179e-04]])

When 𝛽 is very large, then only the arm that currently has the highest Q value will be chosen, even
if other arms might actually be better.

obtain_softmax_probabilities(50, ValueBeliefs_Qoa).round(9)

array([[1., 0.],
[1., 0.]])

For example, assuming we are in state zero and using 𝛽 = 1, we can select an action by

obs = 0
Xoa = obtain_softmax_probabilities(1, ValueBeliefs_Qoa)
np.random.choice([0,1], p=Xoa[obs])

0

We summarize this logic in the agent’s act method:

def act(self, obs):
Xoa = self.obtain_policy_Xoa()
return np.random.choice(self.ActionIxs, p=Xoa[obs])

Learner.act = act

where we define the ActionIxs as range(self.NrActions) in the __init__ method of the agent. We
also define the obtain_policy_Xoa method in the agent class:
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def obtain_policy_Xoa(self):
return obtain_softmax_probabilities(self.ChoiceIntensity, self.ValueBeliefs_Qoa)

Learner.obtain_policy_Xoa = obtain_policy_Xoa

Testing the act and obtain_policy_Xoa methods:

learner = Learner(np.ones((2,2)), 0.9, 0.1, 1.0)

learner.obtain_policy_Xoa()[0]

array([0.5, 0.5])

Selecting action uniformly at random for 1000 times should give a mean index of approx. 0.5:

np.mean([learner.act(0) for _ in range(1000)])

0.479

10.4.3 Learning rule | Temporal-difference learning

The learning rule solves the challenge of delayed consequences. The value beliefs are updated using the
Bellman equation in light of new information. As the Bellman equation describes how state(-action)
values relate at different timesteps, this reinforcement learning update class is called temporal-
difference learning.

Given an observed state 𝑠, the agent selects an action 𝑎 and receives a reward 𝑟. Then, the agent
updates its value beliefs (for state-action pair 𝑠-𝑎) according to

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼 ((1 − 𝛾)𝑟 + 𝛾 ∑
𝑏

𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏) − 𝑄𝑡(𝑠, 𝑎)) . (10.1)

DeepDive | There is some freedom into designing the specifics of the temporal-difference update,
especially regarding estimating the value of the next state or observation. The specific update used
above is called Expected SARSA. It is beyond the scope of this course to discuss the different
temporal-difference learning algorithms. The interested reader is referred to excellent material on
(multi-agent) reinforcement learning, e.g., (Albrecht et al., 2024; Sutton & Barto, 2018).

The extent to which the value beliefs are updated is controlled by a second parameter, 𝛼 ∈ (0, 1),
called the learning rate.

When 𝛼 = 0, there is no updating, and the reward does not affect value beliefs,

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) =∶ old estimate.

The value belief update always remains the old estimate of the value beliefs.

When 𝛼 = 1, the value belief for the state-action pair (𝑠, 𝑎) becomes a discount-factor weighted average
between the current reward 𝑟 and the expected value of the next state ∑𝑏 𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏),
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𝑄𝑡+1(𝑠, 𝑎) = (1 − 𝛾)𝑟 + 𝛾 ∑
𝑏

𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏) =∶ new estimate.

The value belief update is entirely determined by the new estimate of the value beliefs, which is the
current reward received 𝑟 plus the discount factor 𝛾 multiplied by the expected value of the following
state ∑𝑏 𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏), and adequately normalized with the prefactor (1 − 𝛾).
When 0 < 𝛼 < 1, the new value belief for the rewarded arm is a weighted average between old value
belief and new reward information,

𝑄𝑡+1(𝑠, 𝑎) = (1 − 𝛼) old estimate +𝛼 new estimate (10.2)

= (1 − 𝛼) 𝑄𝑡(𝑠, 𝑎) +𝛼 ((1 − 𝛾)𝑟 + 𝛾 ∑
𝑏

𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏)) . (10.3)

Once more, we face a trade-off. Clearly, setting 𝛼 = 0 is ineffective since the agent does not acquire
knowledge. Yet, if 𝛼 is excessively high; the agent tends to forget previously learned state-action
information.

Temporal-difference reward-prediction error. Another way to think about the update equation
(Equation 10.1) is as follows: The value beliefs are updated by the temporal-difference reward-prediction
error (TDRP error) times the learning rate. The TDRP error equals the difference between the new
estimate and the old estimate of the value beliefs. If the TDRP error is zero, the agent correctly
predicted the next reward, and thus, no further adjustments in the value beliefs are necessary.

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼 TDRP-error, (10.4)

= 𝑄𝑡(𝑠, 𝑎) + 𝛼( new estimate − old estimate), (10.5)

= 𝑄𝑡(𝑠, 𝑎) + 𝛼((1 − 𝛾)𝑟 + 𝛾 ∑
𝑏

𝑥𝑡(𝑠′, 𝑏)𝑄𝑡(𝑠′, 𝑏) − 𝑄𝑡(𝑠, 𝑎) ) (10.6)

DeepDive | The exact terminology temporal-difference reward-prediction error is used rather rarely.
We use it here to express the interdisciplinary nature of temporal-difference reward-prediction learning.
In machine learning, the term temporal-difference error is more common. It describes the difference
between the predicted and the observed reward. In psychology and neuroscience, the term reward-
prediction error is used in the context of the brain’s dopamine system, where it is thought to signal
the difference between the expected and the observed reward. The term temporal-difference reward-
prediction error combines both terms, expressing the idea that the agent learns by predicting future
rewards.

Executing the value belief update in Python may look like

def update(self,
obs: int,
action: int,
reward: float,
next_obs: int,
):

"""Updates the value beliefs / Q-value of an action."""

temporal_difference =self.obtain_temporal_difference(
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obs, action, reward, next_obs)

self.ValueBeliefs_Qoa[obs, action] = (
self.ValueBeliefs_Qoa[obs, action] + self.LearningRate * temporal_difference

)

Learner.update = update

We program the update method highly modular. It calls the obtain_temporal_difference method
to compute the temporal-difference error and then updates the value beliefs accordingly. The
obtain_temporal_difference method is defined as follows:

def obtain_temporal_difference(self,
obs: int,
action: int,
reward: float,
next_obs: int,
):

"""Compute temporal-difference eorror"""
next_Qoa = self.obtain_nextQoa(next_obs)
new_estimate = (1-self.DiscountFactor) * reward + self.DiscountFactor * next_Qoa
old_estimate = self.ValueBeliefs_Qoa[obs][action]
return new_estimate - old_estimate

Learner.obtain_temporal_difference = obtain_temporal_difference

In here, we call the obtain_nextQoa method to compute the expected value of the next state. The
obtain_nextQoa method is defined as follows:

def obtain_nextQoa(self, next_obs: int):
policy_Xoa = self.obtain_policy_Xoa()
return np.sum(policy_Xoa[next_obs] * self.ValueBeliefs_Qoa[next_obs])

Learner.obtain_nextQoa = obtain_nextQoa

Testing the update method: First, let’s assume the agent does not care about future rewards at
all and has a discount factor of zero

learner = Learner(ValueBeliefs_Qoa = np.ones((2,2)),
DiscountFactor = 0.0,
LearningRate = 0.1,
ChoiceIntensity = 1.0)

learner.ValueBeliefs_Qoa

array([[1., 1.],
[1., 1.]])

Let’s assume the agent selected the action with index 0 after observing the state with index 0, received
a reward of zero, and observed the next state with index 1.
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learner.update(obs=0, action=0, reward=0, next_obs=1)
learner.ValueBeliefs_Qoa.round(4)

array([[0.9, 1. ],
[1. , 1. ]])

The value belief for the action 0 in state 0 is updated exactly as a learning rate weighted average:
𝛼 ⋅ new estimate + (1 − 𝛼) ⋅ old estimate = 𝛼0 + (1 − 𝛼)1 = 0.1 ⋅ 0 + 0.9 ⋅ 1.
Repeating this update a hundred more time steps updates the value beliefs for the action 0 in state 0
to the expected value of zero.

for _ in range(100): learner.update(obs=0, action=0, reward=0, next_obs=1)
learner.ValueBeliefs_Qoa.round(4)

array([[0., 1.],
[1., 1.]])

Now, we repeat that test, but with an agent with a discount factor of 𝛾 = 0.8.

learner = Learner(ValueBeliefs_Qoa = 1*np.ones((2,2)),
DiscountFactor = 0.8,
LearningRate = 0.1,
ChoiceIntensity = 1.0)

learner.ValueBeliefs_Qoa

array([[1., 1.],
[1., 1.]])

for _ in range(100): learner.update(obs=0, action=0, reward=0, next_obs=1)
learner.ValueBeliefs_Qoa.round(4)

array([[0.8, 1. ],
[1. , 1. ]])

Now, the value belief for the action 0 in state 0 is updated to 0.8. Can you explain why?

We have convince ourselves that the learner’s update methods works as we expect.

Now, we are ready to let it learn in the risk-reward dilemma environment.

10.4.4 Testing the interface
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learner = Learner(ValueBeliefs_Qoa = np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 1.0)

print(learner.obtain_policy_Xoa())

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

print(" - - - - ")
df = interface_run(learner, env, 10000)
print(" - - - - ")

print(learner.obtain_policy_Xoa())

[[0.5 0.5]
[0.5 0.5]]
- - - -
- - - -
[[0.5091271 0.4908729 ]
[0.50860671 0.49139329]]

The learning agent’s policy changed. However, not too much. We know from Lecture 03.01-
SequentialDecisions that the agent should learn to prefer the cautious action in both states under
these parameter settings.

Try re-executing the above cell while make some changes to the parameters. Can you
get an intuition what is important for a successful learning process?

The process of finding the right parameters for the agent is called hyperparameter tuning. It is a
crucial step in machine learning and often requires a lot of trial and error.

From a modeling point of view, we aim to go beyond finding the right parameter. We aim to
understand how the parameters influence the learning process.

Comparing the initial with the final policy is not the best way to facilitate both aims. We need a more
refined way to keep track of the learning process.

10.5 Investigating the learning process

To keep track of the learning process, we store the value beliefs and the policy in a pandas DataFrame.
Aditionally, we also record the learning rate and the choice intensity.

def interface_run(agent, env, NrOfTimesteps):
"""Run the multi-agent environment for several time steps."""

columns = ["action", "observation", "reward", "beliefs", "policy",
"ChoiceIntensity", "LearningRate"]

df = pd.DataFrame(index=range(NrOfTimesteps), columns=columns)

observations = env.observe()
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for t in range(NrOfTimesteps):

action = agent.act(observations[0])

next_observations, rewards, info = env.step([action])

agent.update(observations[0], action,
rewards[0], next_observations[0])

df.loc[t] = (action, next_observations[0], rewards[0],
deepcopy(agent.ValueBeliefs_Qoa),
deepcopy(agent.obtain_policy_Xoa()),
deepcopy(agent.ChoiceIntensity),
deepcopy(agent.LearningRate))

observations = next_observations

return df

learner = Learner(ValueBeliefs_Qoa = 0*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.05,
ChoiceIntensity = 8.0)

print(learner.obtain_policy_Xoa())

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

df = interface_run(learner, env, 10000)

[[0.5 0.5]
[0.5 0.5]]

As we stored the value beliefs and policies as two-dimensional numpy arrays, we convert them into
three-dimensional numpy with time running on the first dimension:

beliefs_Qtoa = np.array(df.beliefs.values.tolist())
policy_Xtoa = np.array(df.policy.values.tolist())
beliefs_Qtoa.shape, policy_Xtoa.shape

((10000, 2, 2), (10000, 2, 2))

We include these conversions into a plotting function that visualizes the learning process

def plot_learning_process(df, plot_varying_parameters=False):
beliefs_Qtoa = np.array(df.beliefs.values.tolist())
policy_Xtoa = np.array(df.policy.values.tolist())
beliefs_Qtoa.shape, policy_Xtoa.shape
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fig = plt.figure(figsize=(14,6))

ax0 = fig.add_subplot(311)
ax0.plot(beliefs_Qtoa[:,p,c], label='Q(p,c)', color='blue', lw=2)
ax0.plot(beliefs_Qtoa[:,p,r], label='Q(p,r)', color='red', lw=2)
ax0.plot(beliefs_Qtoa[:,d,c], label='Q(d,c)', color='darkblue', ls='--')
ax0.plot(beliefs_Qtoa[:,d,r], label='Q(d,r)', color='darkred', ls='--')
ax0.set_ylabel('Value beliefs');
ax0.legend(loc='center right'); ax0.set_xlim(-10, len(df)*1.1)

ax1 = fig.add_subplot(312, sharex=ax0)
ax1.plot(policy_Xtoa[:,p,c], label='X(p,c)', color='blue', lw=2)
ax1.plot(policy_Xtoa[:,p,r], label='X(p,r)', color='red', lw=2)
ax1.plot(policy_Xtoa[:,d,c], label='X(d,c)', color='darkblue', ls='--')
ax1.plot(policy_Xtoa[:,d,r], label='X(d,r)', color='darkred', ls='--')
ax1.set_ylabel('Policy'); ax1.set_xlabel('Time steps')
ax1.legend(loc='center right')

if plot_varying_parameters:
ax2 = fig.add_subplot(615, sharex=ax0)
ax2.plot(df.LearningRate, label='LearningRate', color='k')
ax2.set_ylabel("Learning\nRate")

ax3 = fig.add_subplot(616, sharex=ax0)
ax3.plot(df.ChoiceIntensity, label='ChoiceIntensity', color='k')
ax3.set_ylabel("Choice\nIntensity"), ax3.set_xlabel('Time steps')

# plt.tight_layout()
plt.subplots_adjust(hspace=0.35)

# plt.legend()
ax0.set_ylim(0, 1);

10.5.1 To little exploitation | To much exploration

learner = Learner(ValueBeliefs_Qoa = 0*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 1.0)

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

df = interface_run(learner, env, 10000)

plot_learning_process(df)
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Figure 10.6: Learning the risk-reward dilemma with to much exploration.

The order of the value beliefs seems roughly consistent with the optimal policy, that prefers the
cautious action over the risky on in both states. However, the agents policy is fluctuating around.
The action choice probabilities are fluctuating around their uniformly random value of 0.5. This is a
sign that the agent explores too much and exploits too little.

10.5.2 To much exploitation | To little exploration

learner = Learner(ValueBeliefs_Qoa = 0*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 100.0)

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

df = interface_run(learner, env, 10000)

plot_learning_process(df)

Figure 10.7: Learning the risk-reward dilemma with to much exploitation.

Increasing the choice intensity leads to a more exploitative policy. However, what the agent learns
depends on the stochasticity of the learning process. Try to convince yourself of that fact by
re-executing the above cell multiple times.
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In other words, the agent may not learn the optimal policy. To little exploration harms the learning.

10.5.3 Decaying exploration | Increasing exploitation

To mitigate the negative effects of too much exploration towards the end of the learning process and
the negative effects of too much exploitation towards the beginning of the learning process, we could
let the choice intensity increase over time. This is called decaying exploration.

We implement this idea by creating a new agent class AdjustingLearner that inherits from the
Learner class. This shows the power of object-oriented programming. We overwrite the update
method to include an increasing choice intensity. We also make the learning rate decay over time.

class AdjustingLearner(Learner):

def __init__(self,
ValueBeliefs_Qoa,
DiscountFactor,
LearningRate, MinLearningRate, LearningRateDecayFactor,
ChoiceIntensity, MaxChoiceIntensity, ChoiceIntensityGrowthFactor,

):

self.DiscountFactor = DiscountFactor

self.LearningRate = LearningRate
self.MinLearningRate = MinLearningRate
self.LearningRateDecayFactor = LearningRateDecayFactor

self.ChoiceIntensity = ChoiceIntensity
self.MaxChoiceIntensity = MaxChoiceIntensity
self.ChoiceIntensityGrowthFactor = ChoiceIntensityGrowthFactor

self.ValueBeliefs_Qoa = ValueBeliefs_Qoa
self.ActionIxs = range(ValueBeliefs_Qoa.shape[1])

def update(self,
obs: int,
action: int,
reward: float,
next_obs: int,
):

"""Updates the value beliefs / Q-value of an action."""

temporal_difference =self.obtain_temporal_difference(
obs, action, reward, next_obs)

self.ValueBeliefs_Qoa[obs, action] = (
self.ValueBeliefs_Qoa[obs, action] + self.LearningRate * temporal_difference

)

self.LearningRate = max(self.MinLearningRate,
self.LearningRate * self.LearningRateDecayFactor)

self.ChoiceIntensity = min(self.MaxChoiceIntensity,
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self.ChoiceIntensity *
self.ChoiceIntensityGrowthFactor)↪

AdjustingLearner.update = update

Now, we are ready to perform a new learning simulation.

learner = AdjustingLearner(ValueBeliefs_Qoa = 0*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1, MinLearningRate = 0.01,

LearningRateDecayFactor = 0.999,↪

ChoiceIntensity = 1.0, MaxChoiceIntensity = 50.0,
ChoiceIntensityGrowthFactor = 1.001)↪

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

df = interface_run(learner, env, 10000)

plot_learning_process(df, plot_varying_parameters=True)

Figure 10.8: Learning the risk-reward dilemma with an increasing choice intensity.

We find the AdjustingLearner is able to consitently learn the optimal policy. Try to convince
yourself that this is true by re-executing the simulation above multiple times. We also
find that it learns the optimal policy in approx. less than 4000 time steps. How does the learning
process depend on the additional parameters?

Obviously, the AdjustingLearner is a more complex agent than the Learner. There is also a promi-
nent trick to give our simpler Learner agent an initial exploration bonus.
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10.5.4 Initial exploration bonus

We can give the agent an initial exploration bonus by setting the initial value beliefs to a high value.
This is called optimistic initialization.

learner = Learner(ValueBeliefs_Qoa = 8*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 60.0)

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

df = interface_run(learner, env, 10000)

plot_learning_process(df)

Figure 10.9: Learning the risk-reward dilemma with an initial exploration bonus.

So far, we have investigated the learning process in a single environment.

Next, we will explore learning in normal-form games to illustrate the modularity of the agent-
environment interface, utilizing the same learning agents as previously discussed.

10.6 Multi-agent environments | Games

10.6.1 Interface

First, we adjust the interface_run function to work with the multi-agent environment.

We can make the columns of a dataframe adaptive to the number of agents.

NrAgents = 2; NrOfTimesteps = 4

def create_dataframe(NrAgents, NrOfTimesteps):
columns = list(np.array([(f"action{i}", f"observation{i}", f"reward{i}",

f"beliefs{i}", f"policy{i}",
f"ChoiceIntensity{i}", f"LearningRate{i}")
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for i in range(NrAgents)]).flatten())

return pd.DataFrame(index=range(NrOfTimesteps), columns=columns)

create_dataframe(NrAgents, NrOfTimesteps)

action0 observation0 reward0 beliefs0 policy0 ChoiceIntensity0 LearningRate0 action1 observation1 reward1 beliefs1 policy1 ChoiceIntensity1 LearningRate1
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

We also write a function to populate the DataFrame with the values of the learning process.

def fill_dataframe(actions, next_observations, rewards, agents):
data = []
for i in range(len(agents)):

data += [actions[i], next_observations[i], rewards[i],
deepcopy(agents[i].ValueBeliefs_Qoa),
deepcopy(agents[i].obtain_policy_Xoa()),
deepcopy(agents[i].ChoiceIntensity),
deepcopy(agents[i].LearningRate)]

return data

Adjusting the interface_run function to work with the multi-agent environment yields a clean and
readable implementation.

def interface_run(agents, env, NrOfTimesteps):
"""Run the multi-agent environment for several time steps."""
df = create_dataframe(len(agents), NrOfTimesteps)

observations = env.observe()

for t in range(NrOfTimesteps):

actions = [agent.act(observations[i])
for i, agent in enumerate(agents)]

next_observations, rewards, info = env.step(actions)

for i, agent in enumerate(agents):
agent.update(observations[i], actions[i], rewards[i],

next_observations[i])↪

df.loc[t] = fill_dataframe(actions, next_observations, rewards, agents)

observations = next_observations

return df
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Testing whether it works in our previous environment, the risk-reward dilemma looks promising.

learner = Learner(ValueBeliefs_Qoa = 8*np.ones((2,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 60.0)

env = RiskRewardDilemma(CollapseProbability=0.2, RecoveryProbability=0.1,
SafeReward=0.8, RiskyReward=1.0, DegradedReward=0.0)

# Note: we need to pass the learner as a list of agents
df = interface_run([learner], env, 4)

df

action0 observation0 reward0 beliefs0 policy0 ChoiceIntensity0 LearningRate0
0 1 0 1.0 [[8.0, 7.93], [8.0, 8.0]] [[0.9852259683067277, 0.014774031693272396], [... 60.0 0.1
1 0 0 0.8 [[7.927906923600332, 7.93], [8.0, 8.0]] [[0.46864505269071266, 0.5313549473092875], [0... 60.0 0.1
2 0 0 0.8 [[7.8567279493493345, 7.93], [8.0, 8.0]] [[0.012172569010807209, 0.9878274309891928], [... 60.0 0.1
3 1 0 1.0 [[7.8567279493493345, 7.86061972818162], [8.0,... [[0.4418871301229423, 0.5581128698770577], [0.... 60.0 0.1

The real test, however, comes with a true multi-agent environment.

10.6.2 Social dilemmas environment

Let’s extend our treatment of reinforcement learning to multiple agents. From the perspective of
each individual agent, other agents make the environment non-stationary. This can complicate
reinforcement learning significantly.

We here focus on normal-form games and use the generic model of a social dilemma, introduced in
Lecture 03.02-StrategicInteractions.

Abate Pollute
Abate 1 | 1 −1 − 𝐹 | +1 + 𝐺
Pollute +1 + 𝐺 | −1 − 𝐹 −1 | −1

Depending on whether the greed 𝐺 and fear 𝐹 are positive or negative, we can distinguish four types
of games Figure 10.10.

In Figure 10.10, the payoff values are ordinal, meaning that only their order, 3 > 2 > 1 > 0, is
considered of relevance.

We also implement it as a class using the same interface as before and letting it inherit from our base
environment.

class SocialDilemma(Environment):
"""A simple social dilemma environment."""

def obtain_StateSet(self):
return ['.'] # a dummy state
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Figure 10.10: Dimensions of a social dilemma with ordinal payoffs and Nash equilibira shown in boxes.

def obtain_ActionSets(self):
# abate, pollute for two agents
return [['a', 'p'], ['a', 'p']]

Due to the absence of environmental state transitions, the environment consistently exists in a single,
effective dummy state. Consequently, the transition tensor is simplified significantly.

def create_TransitionTensor(self):
"""Create the transition tensor."""
return np.ones((self.Z, self.M, self.M, self.Z))

SocialDilemma.create_TransitionTensor = create_TransitionTensor

The reward tensor is slighlty more complicated. The two defining parameters of the social dilemma
environemtn are the greed 𝐺 and the fear 𝐹 .

F, G = sp.symbols('F G')

We represent rewards using a five-dimensional tensor with dimensions 𝑁 × 𝑍 × 𝑀 × 𝑀 × 𝑍. Here, 𝑁
denotes the number of agents, 𝑍 = 1 signifies the state count, and 𝑀 indicates the number of actions.
A uni-dimensional state dimension is essential for accommodating multi-state environments.

R = np.zeros((2,1,2,2,1), dtype=object)

Helper variable for the indices facilitate the construction of the reward tensor.

a = SocialDilemma().obtain_ActionSets()[0].index('a')
p = SocialDilemma().obtain_ActionSets()[0].index('p')
a,p
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(0, 1)

Mutual abatement yields a reward of one for both agents.

R[0, 0, a, a, 0] = R[1, 0, a, a, 0] = 1

Mutual pollution yields a reward of minus one for both agents.

R[0, 0, p, p, 0] = R[1, 0, p, p, 0] = -1

Pollution by one agent and abatement by the other agent yields a reward of one plus the greed for the
polluting agent and minus the fear for the abating agent.

R[0, 0, p, a, 0] = R[1, 0, a, p, 0] = 1 + G
R[0, 0, a, p, 0] = R[1, 0, p, a, 0] = -1 - F

In sum, the reward tensor for agent zero reads,

sp.Array(R[0,0,:,:,0])

[ 1 −𝐹 − 1
𝐺 + 1 −1 ]

and for agent one,

sp.Array(R[1,0,:,:,0])

[ 1 𝐺 + 1
−𝐹 − 1 −1 ]

def create_RewardTensor(self):
"""Create the reward tensor."""
return substitute_in_array(

R, {F: self.Fear, G: self.Greed}).astype(float)

SocialDilemma.create_RewardTensor = create_RewardTensor

The two defining parameters of the social dilemma are the greed 𝐺 and the fear 𝐹 .

def __init__(self, Greed, Fear):
self.N = 2; self.M = 2; self.Z = 1

self.Greed = Greed
self.Fear = Fear

self.StateSet = self.obtain_StateSet()
self.ActionSets = self.obtain_ActionSets()
self.TransitionTensor = self.create_TransitionTensor()
self.RewardTensor = self.create_RewardTensor()

self.state = 0
SocialDilemma.__init__ = __init__
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10.6.3 Testing the implementation:

env = SocialDilemma(Fear=0.65, Greed=0.75)

Mutual cooperation by two abating agents:

env.step([a,a])

([0, 0], array([1., 1.]), {'state': 0})

Mutual defection by two polluting agents:

env.step([p,p])

([0, 0], array([-1., -1.]), {'state': 0})

Different actions:

env.step([a,p])

([0, 0], array([-1.65, 1.75]), {'state': 0})

env.step([p,a])

([0, 0], array([ 1.75, -1.65]), {'state': 0})

Testing whether the implementation works,

learner1 = Learner(ValueBeliefs_Qoa = 8*np.ones((1,2)),
DiscountFactor = 0.9,
LearningRate = 0.1,
ChoiceIntensity = 60.0)

learner2 = deepcopy(learner1)

env = SocialDilemma(Fear=1, Greed=2)

df = interface_run([learner1, learner2], env, 4)
df

action0 observation0 reward0 beliefs0 policy0 ChoiceIntensity0 LearningRate0 action1 observation1 reward1 beliefs1 policy1 ChoiceIntensity1 LearningRate1
0 1 0 3.0 [[8.0, 7.95]] [[0.9525741268224331, 0.047425873177566774]] 60.0 0.1 0 0 -2.0 [[7.9, 8.0]] [[0.0024726231566347743, 0.9975273768433652]] 60.0 0.1
1 0 0 -2.0 [[7.899786583570701, 7.95]] [[0.0468507276383191, 0.9531492723616809]] 60.0 0.1 1 0 3.0 [[7.9, 7.94997774639159]] [[0.047486230263144295, 0.9525137697368558]] 60.0 0.1
2 1 0 -1.0 [[7.899786583570701, 7.860288271841277]] [[0.9145029408174301, 0.08549705918256983]] 60.0 0.1 1 0 -1.0 [[7.9, 7.860264375998088]] [[0.9156096786764698, 0.08439032132353015]] 60.0 0.1
3 0 0 1.0 [[7.830484788680395, 7.860288271841277]] [[0.14329244697889626, 0.8567075530211037]] 60.0 0.1 0 0 1.0 [[7.830698202813024, 7.860264375998088]] [[0.14504926660635398, 0.854950733393646]] 60.0 0.1
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action0 observation0 reward0 beliefs0 policy0 ChoiceIntensity0 LearningRate0 action1 observation1 reward1 beliefs1 policy1 ChoiceIntensity1 LearningRate1

throws no erros.

10.6.4 Transient cooperation

In this section, we show that reinforcement learning agents can learn to cooperate in a tragedy social
dilemma environment. However, this cooperation is not stable. It is only a transient phenomenon
(Goll et al., 2024).

We use a social dilemma with fear 𝐹 = 1 and greed 𝐺 = 2.

env = SocialDilemma(Fear=1, Greed=2)

We want to give the agents an inital boost to cooperate or abate. Thus, we give them an inital higher
value belief for abate than pollute.

learner1 = Learner(ValueBeliefs_Qoa = np.array([[0.5, -0.5]]),
DiscountFactor = 0.9,
LearningRate = 0.01,
ChoiceIntensity = 5.0)

We assume the second agent to be identical to the first one.

learner2 = deepcopy(learner1)

np.random.seed(42)
df = interface_run([learner1, learner2], env, 20000)

def plot_TwoAgentBeliefsPolicies(df):
beliefs0_Qtoa = np.array(df.beliefs0.values.tolist())
policy0_Xtoa = np.array(df.policy0.values.tolist())
beliefs1_Qtoa = np.array(df.beliefs1.values.tolist())
policy1_Xtoa = np.array(df.policy1.values.tolist())

fig = plt.figure(figsize=(14,6))

ax0 = fig.add_subplot(311); ax0.set_ylabel('Value beliefs');
ax0.plot(beliefs0_Qtoa[:,0,a], label='Q1(a)', color='blue',lw=2)
ax0.plot(beliefs0_Qtoa[:,0,p], label='Q1(p)', color='red', lw=2)
ax0.plot(beliefs1_Qtoa[:,0,a], label='Q2(a)', color='darkblue', ls='--')
ax0.plot(beliefs1_Qtoa[:,0,p], label='Q2(p)', color='darkred', ls='--')
ax0.legend(loc='center right'); ax0.set_xlim(-10, len(df)*1.1)

ax1 = fig.add_subplot(312, sharex=ax0); ax1.set_ylabel('Policy')
ax1.plot(policy0_Xtoa[:,0,a], label='X1(a)', color='blue', lw=2)
ax1.plot(policy0_Xtoa[:,0,p], label='X1(p)', color='red', lw=2)
ax1.plot(policy1_Xtoa[:,0,a], label='X2(a)', color='darkblue', ls='--')
ax1.plot(policy1_Xtoa[:,0,p], label='X2(p)', color='darkred', ls='--')
ax1.set_xlabel('Time steps'); ax1.legend(loc='center right')
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plot_TwoAgentBeliefsPolicies(df)

Figure 10.11: Transient cooperation in a tragedy social dilemma.

A propensity for cooperation coupled with excessive exploitation initially leads to transient cooperation
within the stochastic learning dynamics. If one is unaware of this phenomenon, it may seem that the
issue of cooperation in social dilemmas is resolved. However, as learning continues, this cooperation
phase diminishes, resulting in increased defection (pollution) over cooperation (abate). During this
phase, agents explore excessively, necessitating a higher choice intensity to establish more deterministic
policies that align with the Nash equilibrium of full defection.

The timeing of when the breakdown of cooperation happens is stochastic. Re-run the simulation
above with differnt random seeds to see that this is true. Beaware, that you must re-initalize
the learners to begin from scratch.

10.7 Learning goals revisited

• Reinforcement learning is valuable in models of human-environment interactions as a
principled take to integrate individual cognition in dynamic environments and emerging collective
behavior

• We implemented the different elements of the multi-agent environment framework (interface,
environment, agents).

– We implemented and applied a basic temporal-different learning agent.
– We implemented and applied the risk-reward dilemma (Lecture 03.01) and social

dilemma (Lecture 03.02)
– We visualized the learning process

• We introduced and studied the exploration-exploitation trade-off, a general challenge for
decision-making under uncertainty.

• We made all of this possible by using the Python library pandas to manage data and refining
our skills in object-oriented programming.

10.7.1 Key advantages of an RL framework

• Cognitive mechanisms are more integrated / less fragmented than behavioral theories
• Cognitive mechanisms (as in RL) are more formalized than behavioral theories
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• The RL frame provides a natural dynamic extension to some economic equilibrium decision
models.

• The Rl frame allows for the study of behavior changes (e.g., after experimental policy interven-
tions or environmental catastrophes)

10.7.2 Challenges

• The learning is inefficient. The agents require many interactions with the environment to
learn what to do as they do not learn any model of the environment. This is a cognitive wasteful
process.

• Dealing with rare states/events is challenging when learning from only experience. Even
more sample interactions are required to have enough experience of the raw events.

• The stochasticity and hyperparameter tuning make it a cumbersome modeling tool.
Both elements are invaluable for RL as an optimization method. For RL as a model of the cog-
nitive processes underpinning human behavior, stochasticity and hyperparameter tuning com-
plicate the modeling process considerably. They make studying the learning dynamics more
difficult than necessary.

Up next: Deterministic approximations
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11 Learning dynamics

Wolfram Barfuss | University of Bonn | 2024/2025 � Complex Systems Modeling of Human-
Environment Interactions

11.1 Motivation

Modeling model-based reinforcement learning agents

This chapter introduces collective reinforcement learning dynamics - treating the multi-agent
reinforcement learning process as a non-linear dynamic system.

11.1.1 Recap | Reinforcement learning

In chapter 04.02-IndividualLearning, we introduced the basics of the temporal-difference reward-
prediction reinforcement learning process. In essence, learning means updating the quality es-
timates, 𝑄𝑖

𝑡(𝑠, 𝑎), with the current reward-prediction error, 𝛿𝑖
𝑡(𝑠, 𝑎), after selection action 𝑎𝑡 in state

𝑠𝑡 according to

𝑄𝑖
𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑖

𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑖𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡), (11.1)

where 𝛼𝑖 ∈ (0, 1) is the learning rate of agent 𝑖, which regulates how much new information the agent
uses for the update.

The reward-prediction error, 𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡), equals the difference of the new quality estimate, (1−𝛾𝑖)𝑟𝑖

𝑡+
𝛾𝑖𝒬𝑖

𝑛(𝑠𝑡+1), and the current quality estimate, 𝒬𝑖
𝑐(𝑠𝑡),

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = (1 − 𝛾𝑖)𝑟𝑖

𝑡 + 𝛾𝑖𝒬𝑖
𝑛(𝑠𝑡+1, 𝑎𝑡+1) − 𝒬𝑖

𝑐(𝑠𝑡, 𝑎𝑡), (11.2)

where the 𝒬𝑖
𝑛 represents the quality estimate of the next state and 𝒬𝑖

𝑐 represents the quality estimate
of the current state. Depending on how we choose, 𝒬𝑖

𝑛, and 𝒬𝑖
𝑐, we recover various well-known

temporal-difference reinforcement learning update schemes (Barfuss et al., 2019).

For example, we covered the Expected SARSA update with 𝒬𝑖
𝑛(𝑠𝑡+1, 𝑎𝑡+1) = 𝒬𝑖

𝑛(𝑠𝑡+1) =
∑𝑏 𝑥𝑖

𝑡(𝑠𝑡+1, 𝑏)𝑄𝑖
𝑡(𝑠𝑡+1, 𝑏), and 𝒬𝑖

𝑐 = 𝑄𝑖
𝑡. The temporal-difference reward-prediction error then

reads,

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = (1 − 𝛾𝑖)𝑟𝑖

𝑡 + 𝛾𝑖 ∑
𝑏

𝑥𝑖
𝑡(𝑠𝑡+1, 𝑏)𝑄𝑖

𝑡(𝑠𝑡+1, 𝑏) − 𝑄𝑖
𝑡(𝑠𝑡, 𝑎𝑡).
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11.1.2 Modeling challenges of reinforcement learning

Classic reinforcement learning processes are highly stochastic since, generally, all agent strategies
𝑥𝑖(𝑠, 𝑎), and the environments transition function 𝑇 (𝑠, 𝑎, 𝑠′) are probability distributions. This stochas-
ticity induces some challenges for using reinforcement learning as a modeling tool in complex human-
environment systems:

1) Sample inefficiency. The agents need many samples to learn something, as they immediately
forget a sample experience after a value-belief update.

2) Computationally intense. Learning simulations are computationally intense since one re-
quires many simulations to make sense of the noise, and each takes a long time to address the
sample inefficiency.

3) Rare events. Due to the stochasticity, dealing with rare events is particularly difficult to learn
from experience alone.

4) Hard to explain. The stochasticity can sometimes make it hard to explain why a phenomenon
occurred in a simulation.

In contrast, human learning is highly efficient. Thus, as a model of human behavior, this basic
reinforcement learning update scheme is implausible:

• Human cognition is not that simplistic, and their actions are not that stochastic.
• Humans typically build and use a model of the world around them.
• Sometimes, it is possible to invest into multiple options at the same time

How can we address these challenges?

11.1.3 Dynamics of collective reinforcement learning

The essential idea of the collective reinforcement learning dynamics approach is to replace the indi-
vidual sample realizations of the temporal-difference reward-prediction error with its strategy
average plus a small error term,

𝛿 ← 𝛿x + 𝜖.

Thus, collective reinforcement learning dynamics describe how agents with access to (a good
approximation of) the strategy-average reward-prediction error would learn.

There are multiple interpretations to motivate how the agents can obtain the strategy averages:

• Model-based learners. Agents have a model of how the environment works, including how the
other agents behave currently, but not how the other agents learn. The agents use their world
model to stabilize learning. In the limit of a perfect model (and sufficient cognitive resources),
the error term vanishes, 𝜖 → 0.

• Batch learners. The agents store experiences (state observations, rewards, actions, next state
observations) inside a memory batch and replay these experiences to make the learning more
stable. Batch learning is a common algorithmic technique in machine learning. In the limit of
an infinite memory batch, the error term vanishes, 𝜖 → 0 (Barfuss, 2020).

• Different timescales. The agents learn on two different time scales. On one time scale, the
agents interact with the environment, collecting experiences and integrating them to improve
their quality estimates while keeping their strategies fixed. On the other time scale, they use the
accumulated experiences to adapt their strategy. Timescale separation is a common technique
used in theoretical physics. In the limit of a complete time scale separation, having infinite
experiences between two strategy updates, the error term vanishes, 𝜖 → 0 (Barfuss, 2022).
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• Proportional investors. Instead of choosing actions individually, agents can invest an endow-
ment into actions proportional to their policy. Assuming by analogy, that the environment is not
in one of its states but described by its state distribution, agents receive feedback proportionally
to their investment. When there is no noise in the rewards itself, the error term vanishes, 𝜖 → 0

In the following, we focus on the idealized case of a vanishing error term, 𝜖 → 0.

11.1.4 Learning goals

After this chapter, students will be able to:

• Explain the rationale of a dynamic systems treatment of reinforcement learning for complex
human-environment interactions.

• Study dynamic system properties of multi-agent reinforcement learning in human-environment
models

• Use open-source Python packages.

In the next section, we will derive the strategy-average deterministic approximation model of the
multi-agent reinforcement learning process. It goes beyond this lecture to implement the learning
dynamics ourselves (although we could if we invested enough time). Luckily, we can utilize an open-
source Python package to apply and study the learning dynamics, which we will do in the section
afterward.

11.2 Derivation

We import our usual libraries.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5); plt.rcParams['figure.dpi'] = 300
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

Then, we install the pyCRLD package from Github to compare the mathematical derivation with the
respective code method.

!pip install git+https://github.com/barfusslab/pyCRLD.git

from pyCRLD.Agents.Base import abase as AgentBaseClass

From Equation 11.2,

𝛿𝑖
𝑡(𝑠𝑡, 𝑎𝑡) = (1 − 𝛾𝑖)𝑟𝑖

𝑡 + 𝛾𝑖𝒬𝑖
𝑛(𝑠𝑡+1, 𝑎𝑡+1) − 𝒬𝑖

𝑐(𝑠𝑡, 𝑎𝑡),

we see that we need to construct the strategy-average reward, the strategy-average value of the next
state, and the strategy-average value of the current state.
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11.2.1 1) Rewards

The strategy-average version of the current reward is obtained by considering each agent 𝑖 taking action
𝑎 in state 𝑠 when all other agents 𝑗 act according to their strategy 𝑥𝑗(𝑠, 𝑎𝑗), causing the environment
to transition to the next state 𝑠′ with probability 𝑇 (𝑠, 𝑎, 𝑠′), during which agent 𝑖 receives reward
𝑅𝑖(𝑠, 𝑎, 𝑠′). Mathematically, we write,

𝑅𝑖
x(𝑠, 𝑎) = ∑

𝑠′
∑
𝑎𝑗

∏
𝑗≠𝑖

𝑥𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′)𝑅𝑖(𝑠, a, 𝑠′).

Notation-wise, the formulation ∑𝑎𝑗 ∏𝑗≠𝑖 𝑋𝑗(𝑠, 𝑎𝑗) is short for

∑
𝑎𝑗

∏
𝑗≠𝑖

𝑋𝑗(𝑠, 𝑎𝑗) = ∑
𝑎1∈𝒜1

⋯ ∑
𝑎𝑖−1∈𝒜𝑖−1

∑
𝑎𝑖+1∈𝒜𝑖+1

⋯ ∑
𝑎𝑁∈𝒜𝑁

𝑥1(𝑠, 𝑎1) ⋯ 𝑥𝑖−1(𝑠, 𝑎𝑖−1)𝑥𝑖+1(𝑠, 𝑎𝑖+1) ⋯ 𝑥𝑁(𝑠, 𝑎𝑁)

In the pyCRLD package, it is implemented as follows.

AgentBaseClass.Risa??

Signature: AgentBaseClass.Risa(self, Xisa: jax.Array) -> jax.Array
Call signature: AgentBaseClass.Risa(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function abase.Risa at 0x140f4c4a0>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/Base.py
Source:

@partial(jit, static_argnums=0)
def Risa(self,

Xisa:jnp.ndarray # Joint strategy
) -> jnp.ndarray: # Average reward

"""Compute average reward `Risa`, given joint strategy `Xisa`"""
i = 0; a = 1; s = 2; s_ = 3 # Variables
j2k = list(range(4, 4+self.N-1)) # other agents
b2d = list(range(4+self.N-1, 4+self.N-1 + self.N)) # all actions
e2f = list(range(3+2*self.N, 3+2*self.N + self.N-1)) # all other acts

sumsis = [[j2k[l], s, e2f[l]] for l in range(self.N-1)] # sum inds
otherX = list(it.chain(*zip((self.N-1)*[Xisa], sumsis)))

args = [self.Omega, [i]+j2k+[a]+b2d+e2f] + otherX\
+ [self.T, [s]+b2d+[s_], self.R, [i, s]+b2d+[s_],

[i, s, a]]
return jnp.einsum(*args, optimize=self.opti)

The @partial(jit, static_argnums=0) decorator above the method makes the code execution fast.
jit stands for just-in-time compilation and comes from the Python package JAX. Using JAX is very
similar to using numpy. Hence, there is the JAX numpy module, jnp. See, for example, jnp.einsum
in the code above.

Another trick is the use of the self.Omega object, which is a tensor of zeros and ones constructed to
make the summation ∑𝑎𝑗 ∏𝑗≠𝑖 𝑋𝑗(𝑠, 𝑎𝑗) work with the fast einsum method.
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11.2.2 2) Next quality estimates

The strategy average of the following state value is likewise computed by averaging the over all actions
of the other agents and the following states.

For each agent 𝑖, state 𝑠, and action 𝑎, all other agents 𝑗 ≠ 𝑖 choose their action 𝑎𝑗 with probability
𝑥𝑗(𝑠, 𝑎𝑗). Consequently, the environment transitions to the next state 𝑠′ with probability 𝑇 (𝑠, 𝑎, 𝑠′).
At 𝑠′, the agent estimates the quality of the next state to be of 𝑣𝑖

x(𝑠′) = ∑𝑎𝑖∈𝒜𝑖 𝑥𝑖(𝑠′, 𝑎𝑖)𝑞𝑖
x(𝑠′, 𝑎𝑖).

Mathematically, we write,

𝑛𝑄𝑖
x(𝑠, 𝑎) = ∑

𝑠′
∑
𝑎𝑗

∏
𝑗≠𝑖

𝑥𝑗(𝑠, 𝑎𝑗)𝑇 (𝑠, 𝑎, 𝑠′)𝑣𝑖
x(𝑠′).

11.2.3 State values

We compute the state values 𝑣𝑖
x(𝑠) exactly like in Chapters 03.01 and 03.03. We write the Bellman

equation in matrix form and bring the values v𝑖
x on one side,

v𝑖
x = (1 − 𝛾𝑖)(1𝑍 − 𝛾𝑖Tx)−1R𝑖

x.

In the pyCRLD package, it is implemented as follows.

AgentBaseClass.Vis??

Signature:
AgentBaseClass.Vis(

self,
Xisa: jax.Array,
Ris: jax.Array = None,
Tss: jax.Array = None,
Risa: jax.Array = None,

) -> jax.Array
Call signature: AgentBaseClass.Vis(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function abase.Vis at 0x140f4cb80>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/Base.py
Source:

@partial(jit, static_argnums=0)
def Vis(self,

Xisa:jnp.ndarray, # Joint strategy
Ris:jnp.ndarray=None, # Optional reward for speed-up
Tss:jnp.ndarray=None, # Optional transition for speed-up
Risa:jnp.ndarray=None # Optional reward for speed-up
) -> jnp.ndarray: # Average state values

"""Compute average state values `Vis`, given joint strategy `Xisa`"""
# For speed up
Ris = self.Ris(Xisa, Risa=Risa) if Ris is None else Ris
Tss = self.Tss(Xisa) if Tss is None else Tss

i = 0 # agent i
s = 1 # state s
sp = 2 # next state s'

n = np.newaxis
Miss = np.eye(self.Z)[n,:,:] - self.gamma[:, n, n] * Tss[n,:,:]

invMiss = jnp.linalg.inv(Miss)
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return self.pre[:,n] * jnp.einsum(invMiss, [i, s, sp], Ris, [i, sp],
[i, s], optimize=self.opti)

11.2.4 Transition matrix

The transition matrix Tx is a 𝑍 × 𝑍 matrix, where the element 𝑇x(𝑠, 𝑠′) is the probability of
transitioning from state 𝑠 to 𝑠′ under the joint policy x. It is computed as

𝑇x(𝑠, 𝑠′) = ∑
𝑎𝑖

∏
𝑖

𝑥𝑖(𝑠, 𝑎𝑖)𝑇 (𝑠, a, 𝑠′).

In the pyCRLD package, it is implemented as follows.

AgentBaseClass.Tss??

Signature: AgentBaseClass.Tss(self, Xisa: jax.Array) -> jax.Array
Call signature: AgentBaseClass.Tss(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function abase.Tss at 0x140f4afc0>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/Base.py
Source:

@partial(jit, static_argnums=0)
def Tss(self,

Xisa:jnp.ndarray # Joint strategy
) -> jnp.ndarray: # Average transition matrix

"""Compute average transition model `Tss`, given joint strategy `Xisa`"""
# i = 0 # agent i (not needed)
s = 1 # state s
sprim = 2 # next state s'
b2d = list(range(3, 3+self.N)) # all actions

X4einsum = list(it.chain(*zip(Xisa, [[s, b2d[a]] for a in range(self.N)])))
args = X4einsum + [self.T, [s]+b2d+[sprim], [s, sprim]]
return jnp.einsum(*args, optimize=self.opti)

11.2.5 State rewards

The average reward R𝑖
x is a 𝑁 × 𝑍-matrix, where the element 𝑅𝑖

x(𝑠) is the expected reward agent
𝑖 receives in state 𝑠 under the joint policy x. It is computed as

𝑅𝑖
x(𝑠) = ∑

𝑠′
∑
𝑎𝑖

∏
𝑖

𝑥𝑖(𝑠, 𝑎𝑖)𝑇 (𝑠, a, 𝑠′)𝑅𝑖(𝑠, a, 𝑠′).

In the pyCRLD package, it is implemented as follows.

AgentBaseClass.Ris??

Signature: AgentBaseClass.Ris(self, Xisa: jax.Array, Risa: jax.Array = None) -> jax.Array
Call signature: AgentBaseClass.Ris(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function abase.Ris at 0x140f4bd80>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/Base.py
Source:

@partial(jit, static_argnums=0)

239



def Ris(self,
Xisa:jnp.ndarray, # Joint strategy
Risa:jnp.ndarray=None # Optional reward for speed-up
) -> jnp.ndarray: # Average reward

"""Compute average reward `Ris`, given joint strategy `Xisa`"""
if Risa is None: # for speed up

# Variables
i = 0; s = 1; sprim = 2; b2d = list(range(3, 3+self.N))

X4einsum = list(it.chain(*zip(Xisa,
[[s, b2d[a]] for a in range(self.N)])))

args = X4einsum + [self.T, [s]+b2d+[sprim],
self.R, [i, s]+b2d+[sprim], [i, s]]

return jnp.einsum(*args, optimize=self.opti)

else: # Compute Ris from Risa
i=0; s=1; a=2
args = [Xisa, [i, s, a], Risa, [i, s, a], [i, s]]
return jnp.einsum(*args, optimize=self.opti)

11.2.6 3) Current quality estimates

Assuming that agents select their actions according to a softmax policy function,

𝑥𝑖
𝑡(𝑠, 𝑎) = exp𝛽𝑖𝑄𝑖

𝑡(𝑠, 𝑎)
∑𝑏 exp𝛽𝑖𝑄𝑖

𝑡(𝑠, 𝑏) , (11.3)

where 𝛽𝑖 is the intensity of choice of agent 𝑖, we can reformulate the update of the state-action
quality estimates (Equation 11.1) into an update of the policy, i.e., state-action probabilities.
Doing so reduces the dynamic system’s state space size, as we do not need to track the quality estimates
of each agent in each state-action pair. Instead, we only need to track the state-action probabilities
of each agent in each state-action pair. This is advantageous as the lower dimensional dynamic
state space is more straightforward to analyze and visualize.

For the derivation of the joint policy update, we need to solve the policy function for 𝑄𝑖
𝑡(𝑠, 𝑎),

𝑄𝑖
𝑡(𝑠, 𝑎) = 1

𝛽𝑖 ln𝑥𝑖
𝑡(𝑠, 𝑎) + 1

𝛽𝑖 ln[∑
𝑏

exp𝛽𝑖𝑄𝑖
𝑡(𝑠, 𝑏)] (11.4)

= 1
𝛽𝑖 ln𝑥𝑖

𝑡(𝑠, 𝑎) + 𝐶𝑖(𝑠) (11.5)

where 𝐶𝑖(𝑠) denots a constant in actions. It may vary for each agent and state but not for actions.

The step-by-step derivation of the joint policy update is as follows:
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𝑥𝑖
𝑡+1(𝑠, 𝑎) = exp𝛽𝑖𝑄𝑖

𝑡+1(𝑠, 𝑎)
∑𝑏 exp𝛽𝑖𝑄𝑖

𝑡+1(𝑠, 𝑏) (11.6)

= exp [𝛽𝑖 (𝑄𝑖
𝑡(𝑠, 𝑎) + 𝛼𝑖𝛿𝑖

𝑡(𝑠, 𝑎))]
∑𝑏 exp [𝛽𝑖 (𝑄𝑡(𝑠, 𝑏) + 𝛼𝑖𝛿𝑖

𝑡(𝑠, 𝑏))] Inserting the belief update (11.7)

= exp [𝛽𝑖𝑄𝑖
𝑡(𝑠, 𝑎)] exp [𝛼𝑖𝛽𝑖𝛿𝑖

𝑡(𝑠, 𝑎)]
∑𝑏 exp [𝛽𝑖𝑄𝑡(𝑠, 𝑏)] exp [𝛼𝑖𝛽𝑖𝛿𝑖

𝑡(𝑠, 𝑏)] Factoring the exponentials (11.8)

= 𝑥𝑖
𝑡(𝑠, 𝑎) exp [𝛼𝑖𝛽𝑖𝛿𝑖

𝑡(𝑠, 𝑎)]
∑𝑏 𝑥𝑖

𝑡(𝑠, 𝑏) exp [𝛼𝑖𝛽𝑖𝛿𝑖
𝑡(𝑠, 𝑏)] Multiplying by

1
𝑧
1
𝑧
with 𝑧 = ∑

𝑐
exp𝛽𝑖𝑄𝑖

𝑡(𝑠, 𝑐) (11.9)

= 𝑥𝑖
𝑡(𝑠, 𝑎) exp [𝛼𝑖𝛽𝑖𝛿𝑖

x(𝑠, 𝑎)]
∑𝑏 𝑥𝑖

𝑡(𝑠, 𝑏) exp [𝛼𝑖𝛽𝑖𝛿𝑖
x(𝑠, 𝑏)] Replacing sample 𝛿𝑖

𝑡 with strategy-average 𝛿𝑖
x (11.10)

= 𝑥𝑖
𝑡(𝑠, 𝑎) exp [𝛼𝑖𝛽𝑖 ((1 − 𝛾𝑖)𝑅𝑖

x(𝑠, 𝑎) + 𝛾𝑖 ⋅ 𝑛𝑄𝑖
x(𝑠, 𝑎) − 𝑄𝑖

𝑡(𝑠, 𝑎))]
∑𝑏 𝑥𝑖

𝑡(𝑠, 𝑏) exp [𝛼𝑖𝛽𝑖 ((1 − 𝛾𝑖)𝑅𝑖
x(𝑠, 𝑏) + 𝛾𝑖 ⋅ 𝑛𝑄𝑖

x(𝑠, 𝑏) − 𝑄𝑖
𝑡(𝑠, 𝑏))] Filling 𝛿𝑖

x (11.11)

=
𝑥𝑖

𝑡(𝑠, 𝑎) exp [𝛼𝑖𝛽𝑖 ((1 − 𝛾𝑖)𝑅𝑖
x(𝑠, 𝑎) + 𝛾𝑖 ⋅ 𝑛𝑄𝑖

x(𝑠, 𝑎) − 1
𝛽𝑖 ln𝑥𝑖

𝑡(𝑠, 𝑎))]
∑𝑏 𝑥𝑖

𝑡(𝑠, 𝑏) exp [𝛼𝑖𝛽𝑖 ((1 − 𝛾𝑖)𝑅𝑖
x(𝑠, 𝑏) + 𝛾𝑖 ⋅ 𝑛𝑄𝑖

x(𝑠, 𝑏) − 1
𝛽𝑖 ln𝑥𝑖

𝑡(𝑠, 𝑏))]
(11.12)

Using 𝑄𝑖
𝑡(𝑠, 𝑎) = 1

𝛽𝑖 ln𝑥𝑡(𝑠, 𝑎) + 𝐶𝑖(𝑠) (11.13)

In summary, the strategy-average of the current state-action value, 𝑄𝑖
𝑡(𝑠, 𝑎) is

1
𝛽𝑖 ln𝑥𝑖(𝑠, 𝑎).

11.2.7 Strategy-average reward-prediction temporal-difference error

from pyCRLD.Agents.StrategySARSA import stratSARSA

Taken together, the strategy-average reward-prediction error is

𝛿𝑖
x(𝑠, 𝑎) = (1 − 𝛾𝑖)𝑅𝑖

x(𝑠, 𝑎) + 𝛾𝑖 ⋅ 𝑛𝑄𝑖
x(𝑠, 𝑎) − 1

𝛽𝑖 ln𝑥𝑖(𝑠, 𝑎),

to be inserted in the joint policy update,

𝑥𝑖
𝑡+1(𝑠, 𝑎) = 𝑥𝑖

𝑡(𝑠, 𝑎) exp [𝛼𝑖𝛽𝑖𝛿𝑖
x(𝑠, 𝑎)]

∑𝑏 𝑥𝑖
𝑡(𝑠, 𝑏) exp [𝛼𝑖𝛽𝑖𝛿𝑖

x(𝑠, 𝑏)] .

We made the strategy update independent of the quality beliefs.

In the pyCRLD package, update step is implement as follows,
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stratSARSA.step??

Signature: stratSARSA.step(self, Xisa) -> tuple
Call signature: stratSARSA.step(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function strategybase.step at 0x140f907c0>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/StrategyBase.py
Source:

@partial(jit, static_argnums=0)
def step(self,

Xisa # Joint strategy
) -> tuple: # (Updated joint strategy, Prediction error)

"""
Performs a learning step along the reward-prediction/temporal-difference error
in strategy space, given joint strategy `Xisa`.
"""
TDe = self.TDerror(Xisa)
n = jnp.newaxis
XexpaTDe = Xisa * jnp.exp(self.alpha[:,n,n] * TDe)
return XexpaTDe / XexpaTDe.sum(-1, keepdims=True), TDe

The step method comes from a parent class, called strategybase, and calls the TDerror method,
which is initialized upon creating a specific agent collective with the concrete reward-prediction error
method from the SARSA agent.

The reward-prediction error of the SARSA agent is implemented as follows.

stratSARSA.RPEisa??

Signature: stratSARSA.RPEisa(self, Xisa, norm=False) -> numpy.ndarray
Call signature: stratSARSA.RPEisa(*args, **kwargs)
Type: PjitFunction
String form: <PjitFunction of <function stratSARSA.RPEisa at 0x140f905e0>>
File: ~/Other/miniconda3/envs/iw-dev/lib/python3.11/site-packages/pyCRLD/Agents/StrategySARSA.py
Source:

@partial(jit, static_argnums=(0,2))
def RPEisa(self,

Xisa, # Joint strategy
norm=False # normalize error around actions?
) -> np.ndarray: # RP/TD error

"""
Compute reward-prediction/temporal-difference error for
strategy SARSA dynamics, given joint strategy `Xisa`.
"""
R = self.Risa(Xisa)
NextQ = self.NextQisa(Xisa, Risa=R)

n = jnp.newaxis
E = self.pre[:,n,n]*R + self.gamma[:,n,n]*NextQ - 1/self.beta[:, n, n] * jnp.log(Xisa)
E *= self.beta[:,n,n]

E = E - E.mean(axis=2, keepdims=True) if norm else E
return E

11.3 Application

Let us apply the collective reinforcement learning dynamics to the ecological public good environment
from Chapter 03.03. We will highlight the complex dynamics phenomena that arise from the collective
reinforcement learning dynamics (Barfuss, Flack, et al., 2024).
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Figure 11.1: Ecological public good collective decision-making environment

For convenience, we import the environment class from the pyCRLD package. However, you now possess
all the skills needed to implement it on your own.

from pyCRLD.Environments.EcologicalPublicGood import EcologicalPublicGood as EcoPG

We initialize the environment with two agents, a benefit-to-cost ratio of 𝑓 = 1.2, a cost of 𝑐 = 5, a
collapse impact of 𝑚 = −5, a collapse leverage of 0.2, and a recovery probability of 0.01. We set the
degraded_choice parameter to False to remove all agency from the agents in the degraded state.
In other word, regardless what they do in the degraded state, they have to wait for the recovery on
average 1/𝑞𝑟 timesteps.

# Inititalize the ecological public good environment
env = EcoPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)

These parameters ensure to have the same short-term welfare values in the prosperous state as shown
in the Figure above.

p = env.Sset.index('p'); g = env.Sset.index('g') # indices of the prosperous and
degraded state↪

print("Agent zero's welfare\n", env.R[0, p, :, :, p])
print("\nAgent one's welfare\n", env.R[1, p, :, :, p])

Agent zero's welfare
[[ 1. -2.]
[ 3. 0.]]

Agent one's welfare
[[ 1. 3.]
[-2. 0.]]
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11.3.1 Learning trajectories

We create a multi-agent-environment interface MAEi composed of SARSA agents with a learning rate
of 0.05, a choice intensity of 50.0, and a discount factor of 0.75. We set the use_prefactor parameter
to True to use the pre-factor (1 − 𝛾) in the policy update.

MAEi = stratSARSA(env, learning_rates=0.05, choice_intensities=50.0,
discount_factors=0.75, use_prefactor=True)↪

Let us evolve the learning from a random initial joint policy,

x = MAEi.random_softmax_strategy()
x

Array([[[0.65391284, 0.34608716],
[0.540063 , 0.45993698]],

[[0.23748323, 0.7625168 ],
[0.6527203 , 0.34727973]]], dtype=float32)

for a maximum of 5000 time steps with a convergence tolerance of 10−5. Thus, if two consecutive joint
policies are closer than 10−5, the learning process stops.

policy_trajectory_Xtisa, fixedpointreached = MAEi.trajectory(x, Tmax=5000,
tolerance=10**-5)↪

fixedpointreached

True

We have reached a fixed point and the learning trajecotry has a length of

len(policy_trajectory_Xtisa)

153

Let us visualize the time evolution of learning trajectory.

c = env.Aset[0].index('c'); d = env.Aset[0].index('d') # action indices
plt.plot(policy_trajectory_Xtisa[:, 0, p, c], label='Agent zero in prosperous

state', c='blue', lw=3, alpha=0.5)↪

plt.plot(policy_trajectory_Xtisa[:, 1, p, c], label='Agent one in prosperous state',
c='blue', ls='--')↪

plt.plot(policy_trajectory_Xtisa[:, 0, g, c], label='Agent zero in degraded state',
c='red', lw=3, alpha=0.5)↪

plt.plot(policy_trajectory_Xtisa[:, 1, g, c], label='Agent one in degraded state',
c='red', ls='--');↪

plt.xlabel('Time steps'); plt.ylabel('Cooperation probability'); plt.legend();
plt.ylim(0, 1);↪
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Let’s repeat this serveral times from different random joint policies. Exectue the cell below mul-
tiple times and observe what happens.

x = MAEi.random_softmax_strategy()
policy_trajectory_Xtisa, fixedpointreached = MAEi.trajectory(x, Tmax=5000,

tolerance=10**-5)↪

plt.plot(policy_trajectory_Xtisa[:, 0, p, c], label='Agent zero in prosperous
state', c='blue', lw=3, alpha=0.5)↪

plt.plot(policy_trajectory_Xtisa[:, 1, p, c], label='Agent one in prosperous state',
c='blue', ls='--')↪

plt.plot(policy_trajectory_Xtisa[:, 0, g, c], label='Agent zero in degraded state',
c='red', lw=3, alpha=0.5)↪

plt.plot(policy_trajectory_Xtisa[:, 1, g, c], label='Agent one in degraded state',
c='red', ls='--');↪

plt.xlabel('Time steps'); plt.ylabel('Cooperation probability'); plt.legend();
plt.ylim(0, 1);↪

Some observations you should make:

• Learning occurs fast. The agents quickly attain a stable state within just a few hundred steps,
and their execution is remarkably rapid.

245



• Learning is deterministic. Given an initial joint policy, the learning process has no stochastic
fluctuations. The agents learn deterministically. However, what they learn is a probability
distribution.

• Outcome is bistable. The agents learn to either cooperate or defect completely in the pros-
perous state, depending on where they start. If they start closer to cooperation, they learn to
cooperate. If they start closer to defection, they learn to defect.

• Agents randomize. In the degraded state, agents learn to randomize over actions fully, i.e.,
choose each of their two options with a probability of 0.5. This is because the agents cannot
influence the outcome of their actions and, thus, are driven only by exploration. You can imagine
the desire to explore as a form of intrinsic motivation that dominates here without controllable
extrinsic rewards.

11.3.2 Flow plot

The determinism and the fast computation allow for an improved visualization of the learning process.
As with any deterministic dynamic system, we can visualize the flow plot of the dynamics (See Chapter
02.01).

In the pyCRLD package, we have a special module for that purpose.

from pyCRLD.Utils import FlowPlot as fp

Applying this function yields a flow plot of the learning dynamics which highlights the bistability of
the learning process in the prosperous state and the randomization in the degraded state.

x = ([0], [g,p], [c]) # which (agent, observation, action) to plot on x axis
y = ([1], [g,p], [c]) # which (agent, observation, action) to plot on y axis
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
ax = fp.plot_strategy_flow(MAEi, x, y, action_probability_points, conds=env.Sset)

Figure 11.2: Basic flow of collective reinforcement learning dynamics.

These flow plots allow for a geometric understanding of the collective learning dynamics over the
whole joint policy space. In contrast to a standard flow plot, per default, the arrows show the
temporal-difference reward prediction error. Thus, they have a cognitive interpretation.
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We may use them to study how the parameters of the learning agents and the environment influence
the outcome.

def plot_flow(DiscountFactor=0.75, ChoiceIntensity=50, CollapseImpact=-5,
CollapseLeverage=0.2):↪

env = EcoPG(N=2, f=1.2, c=5, m=CollapseImpact, qc=CollapseLeverage,
qr=0.01, degraded_choice=False)

MAEi = stratSARSA(env, learning_rates=0.05, choice_intensities=ChoiceIntensity,
discount_factors=DiscountFactor, use_prefactor=True)

x = ([0], [g,p], [c]) # which (agent, observation, action) to plot on x axis
y = ([1], [g,p], [c]) # which (agent, observation, action) to plot on y axis
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
ax = fp.plot_strategy_flow(MAEi, x, y, action_probability_points,
conds=env.Sset)↪

When working with this material in a Jupyter notebook, we can interactively study the parameter
dependence of the flow plot.

For example, caring more for the future makes the cooperative basin of attraction larger.

plot_flow(DiscountFactor=0.8)

Figure 11.3: Learning flow with more future caring.

So does a more severe collapse impact,

plot_flow(CollapseImpact=-6)
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Figure 11.4: Learning flow with a more severe collapse impact.

and a collapse that occurse more likely or faster.

plot_flow(CollapseLeverage=0.3)

Figure 11.5: Learning flow with a higher collapse leverage.

The flow in the degraded state is unaffected by these parameter modulations.

A very low choice intensity makes the desire to explore (i.e., randomize) dominate also in the prosperous
state.

plot_flow(ChoiceIntensity=1)
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Figure 11.6: Learning flow with a small intensity of choice makes explorative behavior dominant.

11.3.3 Critical transition

Let us study the learning behavior around the separatrix of the bistable region.

First, we define a function that allows us to enter initial cooperation probabilities for both agents and
return a proper joint policy. This function sets the cooperation probability in the degraded state to
0.5 for both agents, as we have seen that the agents will eventually learn to randomize in the degraded
state and we are not interested in that part of the learning behavior.

def compile_strategy(p0c:float, # cooperation probability of agent zero
p1c:float): # cooperation probability of agent one

Pi = np.array([0.5, p0c]) # coop. prob. in the degraded state set to 0.5
Pj = np.array([0.5, p1c])
xi = np.array([Pi, 1-Pi]).T
xj = np.array([Pj, 1-Pj]).T
return np.array([xi, xj])

We setup the multiagent-environment interaface.

env = EcoPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)
MAEi = stratSARSA(env=env, learning_rates=0.01, choice_intensities=100,

discount_factors=0.75,↪

use_prefactor=True)

To get a feeling for the critical transition, we create three well chosen learning trajectories.

xtrajs = [] # storing strategy trajectories
fprs = [] # and whether a fixed point is reached
for pc in [0.18, 0.19, 0.20]: # cooperation probability of agent 1

X = compile_strategy(pc, 0.95)
xtraj, fixedpointreached = MAEi.trajectory(X, Tmax=5000, tolerance=10**-5)
xtrajs.append(xtraj); fprs.append(fixedpointreached)
print("Trajectory length:",len(xtraj))
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Trajectory length: 178
Trajectory length: 234
Trajectory length: 174

We plot them ontop of the learning flow.

fig = plt.figure(figsize=(12, 3.5)); ax = fig.add_subplot(132) # to center the plot
fig.add_subplot(131, xticks=[], yticks=[]); fig.add_subplot(133, xticks=[],

yticks=[]);↪

x = ([0], [p], [c]) # which (agent, observation, action) to plot on x axis
y = ([1], [p], [c]) # which (agent, observation, action) to plot on y axis
eps=10e-3; action_probability_points = np.linspace(0+eps, 1.0-eps, 9)
fp.plot_strategy_flow(MAEi, x, y, action_probability_points, axes=[ax])

# Add trajectories to flow plot
fp.plot_trajectories(xtrajs, x=x, y=y, fprs=fprs, cols=['red','blue','blue'],

lws=[2], msss=[2], lss=['-'], alphas=[0.75], axes=[ax]);

ax.set_ylabel("Agent 2's cooperation probability");
ax.set_xlabel("Agent 1's cooperation probability");

Next, we create a more fine-grained bundle of learning trajectories.

# Cooperation probability of agent 1
pcs = np.concatenate([np.linspace(0.01, 0.99, 51), np.linspace(0.185, 0.195, 151)])
pcs = np.sort(np.unique(pcs))

Xktisa = [] # storing strategy trajectories
fprs = [] # and whether a fixed point is reached
for i, pc in enumerate(pcs):

print(f"Progress: {((i+1)/len(pcs)):.2%}", end="\r")
X = compile_strategy(pc, 0.95)
PolicyTrajectories_Xtisa, fixedpointreached = MAEi.trajectory(X, Tmax=5000,
tolerance=10**-5)↪

Xktisa.append(PolicyTrajectories_Xtisa)
fprs.append(fixedpointreached)

Progress: 100.00%
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We obtain the critical point in this bundle of learning trajectories where the two agents
switch or tip from complete defection to complete cooperation.

First, we check that all trajectories converged.

np.all(fprs)

True

Then, we obtain the cooperation probabilities at convergence.

converged_pcs = np.array([Xtisa[-1][:, p, c] for Xtisa in Xktisa])
converged_pcs.shape

(201, 2)

Last, we show the biomodal distribution of full defection and full cooperation.

np.histogram(np.array(converged_pcs).mean(-1), range=(0,1))[0]

array([ 80, 0, 0, 0, 0, 0, 0, 0, 0, 121])

Thus, the critical point lies at the index

cp = np.histogram(np.array(converged_pcs).mean(-1), range=(0,1))[0][0]
cp

80

and has an approximate value between

print(pcs[cp-1], 'and', pcs[cp], '.')

0.18966666666666668 and 0.18973333333333334 .

We use this more fine-grained bundle of learning trajectories to visualize the phenomenon of a critical
slowing down by plotting the time steps required to reach convergence.

plt.plot(pcs[:cp], [len(Xtisa) for Xtisa in Xktisa[:cp]],
'-', color='red', lw=2, alpha=0.8) # defectors in red

plt.plot(pcs[cp:], [len(Xtisa) for Xtisa in Xktisa[cp:]],
'-', color='blue', lw=2, alpha=0.6) # cooperators in blue

plt.ylim(0); plt.ylabel('Timesteps to convergence')
plt.xlabel(f"Agent 1's cooperation probability in the prosperous state");
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Figure 11.7: Time steps required to convergence show a critical slowing down around the tipping point.

We also observe a kind of transient tipping point in the learning dynamics, when plotting the two
closest trajectories around the critical point.

def plot_TransientTipping(xlim=None):
# Plot the defecting learners in red
plt.plot(Xktisa[cp-1][:, 0, p, c], color='red', lw=5, ls=':', label='Agent
zero')↪

plt.plot(Xktisa[cp-1][:, 1, p, c], color='red', lw=4, ls="--", alpha=0.4,
label='Agent one')↪

# Plot the cooperating learners in blue
plt.plot(Xktisa[cp][:, 0, p, c], color='blue', lw=3, ls=':', label='Agent zero')
plt.plot(Xktisa[cp][:, 1, p, c], color='blue', lw=2, ls="--", alpha=0.4,
label='Agent one')↪

plt.xlim(xlim); plt.legend(); plt.xlabel("Timesteps"); plt.ylabel("Cooperation")

plot_TransientTipping()

Figure 11.8: Emergent time scale seperation at the critical point.
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During this emergent timescale separation, the learning process seems to settle on a mixed policy
after approximately 50 timesteps. It remains at this point for another 50 steps, which is the same
duration it took to reach this mixed policy (Figure 11.9). The learning adjusts the policies more
rapidly after this period until they converge to two deterministic policies.

plot_TransientTipping((0, 95))

Figure 11.9: Apparent convergence to a mixed policy.

11.3.4 Hysteresis

The last phenomenon we want to highlight is hysteresis (See Chapter 02.02). We study the cooperation
probabilities of the agents in the prosperous state as a function of the discount factor 𝛾. We know
from Chapter 03.03 that caring for the future can turn a tragedy of the commons into a comedy while
passing through the coordination regime.

In the following, we start at a relatively low level of caring for the future, increase it, and then decrease
it again, all while letting the agent learn along

First, let us create the discount factor values.

dcfs = list(np.arange(0.6, 0.9, 0.005))
hystcurve = dcfs + dcfs[::-1]

Then, we set up the environment and start the simulation from a random policy. We let the agents
learn for 2500 time steps or until the learning process converges with a tiny tolerance. Then, we record
the final policy, advance the discount factor, and restart from the previous final policy.

# Set up the ecological public goods environment
env = EcoPG(N=2, f=1.2, c=5, m=-5, qc=0.2, qr=0.01, degraded_choice=False)

coops = [] # for storing the cooperation probabilities
X = MAEi.random_softmax_strategy()
for i, dcf in enumerate(hystcurve):

# Adjust multi-agent environment interface with discount factor
MAEi = stratSARSA(env=env, discount_factors=dcf, use_prefactor=True,

learning_rates=0.05, choice_intensities=50)
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trj, fpr = MAEi.trajectory(X, Tmax=2500, tolerance=10e-12)
print(f"Progress: {((i+1)/len(hystcurve)):6.2%} |",

f"Discount Factor {dcf:5.4} | Conv?: {fpr}" , end="\r")
X = trj[-1] # select last strategy
coops.append(X[:, 1, 0]) # append to storage container

Progress: 100.00% | Discount Factor 0.6 | Conv?: True

Now, we plot the computed data. We use the points’ size and color to indicate the time dimensions
of the discount factor changes. The time flows from big to small data points and from dark to light
ones.

# Plot background line
plt.plot(hystcurve, np.array(coops).mean(-1),'-',alpha=0.5,color='k',zorder=-1)
# Plot data points with size and color indicating the time dimension
plt.scatter(hystcurve, np.array(coops).mean(-1), alpha=0.9, cmap='viridis',

s=np.arange(len(hystcurve))[::-1]+1, c=np.arange(len(hystcurve)))

plt.ylabel('Cooperation'); plt.xlabel('Discount Factor'); #plt.ylim(0,1)

Figure 11.10: Hysteresis curve

The hysteresis curve shows that the probability of cooperation among agents in the prosperous state
depends on the history of the discount factor. The agents’ learning dynamics exhibit a memory of the
past, a typical feature of complex systems.

11.4 Learning goals revisited

In this chapter,

• we introduced deterministic approximation models of the stochastic reinforcement learning pro-
cess as a valuable tool for modeling complex human-environment interactions. Collective rein-
forcement learning dynamics model adaptive agents (in stylized model environments)

– that use a perfect model of the world
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– in a computationally fast
– transparent
– and deterministically evolving way.

• We studied complex dynamic phenomena of multi-agent reinforcement learning in the ecological
public good environment.

• To do so, we used the open-source pyCRLD Python package.

11.5 Synthesis

Collective reinforcement learning dynamics bridge agent-based, equation-based (dynamic sys-
tems), and equilibrium-based modeling:

• agent-based: derived from individual agent characteristics
• equation-based: treated as a dynamical systems
• equilibrium-based: fixed points are (close to) the classic equilibrium solutions

Figure 11.11: Three types of models

255



References

Albrecht, S. V., Christianos, F., & Schäfer, L. (2024). Multi-Agent Reinforcement Learning: Founda-
tions and Modern Approaches.

Anderies, J. M., Folke, C., Walker, B., & Ostrom, E. (2013). Aligning Key Concepts for Global
Change Policy: Robustness, Resilience, and Sustainability. Ecology and Society, 18(2). https:
//www.jstor.org/stable/26269292

Anderies, J. M., & Janssen, M. A. (2016). Sustaining the commons. Independent. https://dlc.dlib.i
ndiana.edu/dlc/handle/10535/8839

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S.,
Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5∘C global warming
could trigger multiple climate tipping points. Science, 377(6611), eabn7950. https://doi.org/10.1
126/science.abn7950

Barfuss, W. (2020). Reinforcement Learning Dynamics in the Infinite Memory Limit. Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems, 1768–1770.

Barfuss, W. (2022). Dynamical systems as a level of cognitive analysis of multi-agent learning. Neural
Computing and Applications, 34(3), 1653–1671. https://doi.org/10.1007/s00521-021-06117-0

Barfuss, W., Donges, J. F., & Kurths, J. (2019). Deterministic limit of temporal difference reinforce-
ment learning for stochastic games. Physical Review E, 99(4), 043305. https://doi.org/10.1103/
PhysRevE.99.043305

Barfuss, W., Donges, J. F., Lade, S. J., & Kurths, J. (2018). When optimization for governing human-
environment tipping elements is neither sustainable nor safe. Nature Communications, 9(1), 2354.
https://doi.org/10.1038/s41467-018-04738-z

Barfuss, W., Donges, J. F., Vasconcelos, V. V., Kurths, J., & Levin, S. A. (2020). Caring for the future
can turn tragedy into comedy for long-term collective action under risk of collapse. Proceedings of
the National Academy of Sciences, 117(23), 12915–12922. https://doi.org/10.1073/pnas.1916545
117

Barfuss, W., Donges, J., & Bethge, M. (2024). Ecologically-mediated collective action in commons
with tipping elements. OSF. https://doi.org/10.31219/osf.io/7pcnm

Barfuss, W., Flack, J. C., Gokhale, C. S., Hammond, L., Hilbe, C., Hughes, E., Leibo, J. Z., Lenaerts,
T., Levin, S. A., Madhushani Sehwag, U., McAvoy, A., Meylahn, J. M., & Santos, F. P. (2024).
Collective Cooperative Intelligence. Forthcomming in the Proceedings of the National Academy of
Sciences.

Barrett, S. (1994). Self-Enforcing International Environmental Agreements. Oxford Economic Papers,
46(Supplement_1), 878–894. https://doi.org/10.1093/oep/46.Supplement_1.878

Barrett, S. (2005). Environment and Statecraft: The Strategy of Environmental Treaty-Making. Oxford
University Press. https://doi.org/10.1093/0199286094.001.0001

Barrett, S., & Dannenberg, A. (2012). Climate negotiations under scientific uncertainty. Proceedings
of the National Academy of Sciences, 109(43), 17372–17376. https://doi.org/10.1073/pnas.12084
17109

Biggs, R., Preiser, R., de Vos, A., Schlüter, M., Maciejewski, K., & Clements, H. (2021). The Routledge
Handbook of Research Methods for Social-Ecological Systems (1st ed.). Routledge. https://doi.or
g/10.4324/9781003021339

Boers, N., & Rypdal, M. (2021). Critical slowing down suggests that the western Greenland Ice Sheet
is close to a tipping point. Proceedings of the National Academy of Sciences, 118(21), e2024192118.
https://doi.org/10.1073/pnas.2024192118

256

https://www.jstor.org/stable/26269292
https://www.jstor.org/stable/26269292
https://dlc.dlib.indiana.edu/dlc/handle/10535/8839
https://dlc.dlib.indiana.edu/dlc/handle/10535/8839
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1007/s00521-021-06117-0
https://doi.org/10.1103/PhysRevE.99.043305
https://doi.org/10.1103/PhysRevE.99.043305
https://doi.org/10.1038/s41467-018-04738-z
https://doi.org/10.1073/pnas.1916545117
https://doi.org/10.1073/pnas.1916545117
https://doi.org/10.31219/osf.io/7pcnm
https://doi.org/10.1093/oep/46.Supplement_1.878
https://doi.org/10.1093/0199286094.001.0001
https://doi.org/10.1073/pnas.1208417109
https://doi.org/10.1073/pnas.1208417109
https://doi.org/10.4324/9781003021339
https://doi.org/10.4324/9781003021339
https://doi.org/10.1073/pnas.2024192118


Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., & Kurth-Nelson, Z. (2020). Deep Reinforcement
Learning and Its Neuroscientific Implications. Neuron, 107(4), 603–616. https://doi.org/10.1016/
j.neuron.2020.06.014

Brander, J. A., & Taylor, M. S. (1998). The Simple Economics of Easter Island: A Ricardo-Malthus
Model of Renewable Resource Use. The American Economic Review, 88(1), 119–138. https:
//www.jstor.org/stable/116821

Brockmann, D. (2021). Im Wald vor lauter Bäumen: Unsere komplexe Welt besser verstehen.
Deutscher Taschenbuch Verlag.

Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement:
Resilience of What to What? Ecosystems, 4(8), 765–781. https://doi.org/10.1007/s10021-001-
0045-9

Constantino, S. M., Schlüter, M., Weber, E. U., & Wijermans, N. (2021). Cognition and behavior in
context: A framework and theories to explain natural resource use decisions in social-ecological
systems. Sustainability Science, 16(5), 1651–1671. https://doi.org/10.1007/s11625-021-00989-w

Daniel, C. J., Frid, L., Sleeter, B. M., & Fortin, M.-J. (2016). State-and-transition simulation models:
A framework for forecasting landscape change. Methods in Ecology and Evolution, 7(11), 1413–
1423. https://doi.org/10.1111/2041-210X.12597

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton,
S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg,
J., Ullah, I. I. T., & Lade, S. J. (2020). Eight grand challenges in socio-environmental systems
modeling. Socio-Environmental Systems Modelling, 2, 16226–16226. https://doi.org/10.18174/ses
mo.2020a16226

Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity,
4(5), 41–60. https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.
CO;2-F

Farahbakhsh, I., Bauch, C. T., & Anand, M. (2022). Modelling coupled human–environment com-
plexity for the future of the biosphere: Strengths, gaps and promising directions. Philosophical
Transactions of the Royal Society B: Biological Sciences, 377(1857), 20210382. https://doi.org/10
.1098/rstb.2021.0382

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience
Thinking: Integrating Resilience, Adaptability and Transformability. Ecology and Society, 15(4).
https://doi.org/10.5751/ES-03610-150420

Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., & Winkelmann, R. (2020). The hysteresis of
the Antarctic Ice Sheet. Nature, 585(7826), 538–544. https://doi.org/10.1038/s41586-020-2727-5

Giupponi, C., Ausseil, A.-G., Balbi, S., Cian, F., Fekete, A., Gain, A. K., Essenfelder, A. H., Martínez-
López, J., Mojtahed, V., Norf, C., Relvas, H., & Villa, F. (2022). Integrated modelling of social-
ecological systems for climate change adaptation. Socio-Environmental Systems Modelling, 3,
18161–18161. https://doi.org/10.18174/sesmo.18161

Goll, D., Heitzig, J., & Barfuss, W. (2024). Deterministic Model of Incremental Multi-Agent Boltzmann
Q-Learning: Transient Cooperation, Metastability, and Oscillations (arXiv:2501.00160). arXiv.
https://doi.org/10.48550/arXiv.2501.00160

Hoffman, M., & Yoeli, E. (2022). Hidden Games: The Surprising Power of Game Theory to Explain
Irrational Human Behaviour. Hachette UK.

Izquierdo, L. R., Izquierdo, S. S., & Sandholm, W. H. (2024). Agent-Based Evolutionary Game
Dynamics. https://doi.org/10.5281/zenodo.13938500

Lenton, T. M., Armstrong McKay, D. I., Loriani, S., Abrams, J. F., Lade, S. J., Donges, J. F., Milkoreit,
M., Powell, T., Smith, S. R., Zimm, C., Buxton, J. E., Bailey, E., Laybourn, L., Ghadiali, A., &
Dyke, J. G. (Eds.). (2023). The Global Tipping Points Report 2023. https://global-tipping-
points.org

Levin, S., & Xepapadeas, A. (2021). On the Coevolution of Economic and Ecological Systems. Annual
Review of Resource Economics, 13(1), 355–377. https://doi.org/10.1146/annurev-resource-103020-
083100

257

https://doi.org/10.1016/j.neuron.2020.06.014
https://doi.org/10.1016/j.neuron.2020.06.014
https://www.jstor.org/stable/116821
https://www.jstor.org/stable/116821
https://doi.org/10.1007/s10021-001-0045-9
https://doi.org/10.1007/s10021-001-0045-9
https://doi.org/10.1007/s11625-021-00989-w
https://doi.org/10.1111/2041-210X.12597
https://doi.org/10.18174/sesmo.2020a16226
https://doi.org/10.18174/sesmo.2020a16226
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F
https://doi.org/10.1098/rstb.2021.0382
https://doi.org/10.1098/rstb.2021.0382
https://doi.org/10.5751/ES-03610-150420
https://doi.org/10.1038/s41586-020-2727-5
https://doi.org/10.18174/sesmo.18161
https://doi.org/10.48550/arXiv.2501.00160
https://doi.org/10.5281/zenodo.13938500
https://global-tipping-points.org
https://global-tipping-points.org
https://doi.org/10.1146/annurev-resource-103020-083100
https://doi.org/10.1146/annurev-resource-103020-083100


Macy, M. W., & Flache, A. (2002). Learning dynamics in social dilemmas. Proceedings of the National
Academy of Sciences, 99(suppl_3), 7229–7236. https://doi.org/10.1073/pnas.092080099

Marescot, L., Chapron, G., Chadès, I., Fackler, P. L., Duchamp, C., Marboutin, E., & Gimenez, O.
(2013). Complex decisions made simple: A primer on stochastic dynamic programming. Methods
in Ecology and Evolution, 4(9), 872–884. https://doi.org/10.1111/2041-210X.12082

Meadows, D. H. (2009). Thinking in systems: A primer. Earthscan.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-

miller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/natu
re14236

Motesharrei, S., Rivas, J., & Kalnay, E. (2014). Human and nature dynamics (HANDY): Modeling
inequality and use of resources in the collapse or sustainability of societies. Ecological Economics,
101, 90–102. https://doi.org/10.1016/j.ecolecon.2014.02.014

Müller, B., Hoffmann, F., Heckelei, T., Müller, C., Hertel, T. W., Polhill, J. G., van Wijk, M.,
Achterbosch, T., Alexander, P., Brown, C., Kreuer, D., Ewert, F., Ge, J., Millington, J. D. A.,
Seppelt, R., Verburg, P. H., & Webber, H. (2020). Modelling food security: Bridging the gap
between the micro and the macro scale. Global Environmental Change, 63, 102085. https://doi.or
g/10.1016/j.gloenvcha.2020.102085

Müller-Hansen, F., Cardoso, M. F., Dalla-Nora, E. L., Donges, J. F., Heitzig, J., Kurths, J., &
Thonicke, K. (2017). A matrix clustering method to explore patterns of land-cover transitions in
satellite-derived maps of the Brazilian Amazon. Nonlinear Processes in Geophysics, 24(1), 113–123.
https://doi.org/10.5194/npg-24-113-2017

Nowak, M. A. (2006). Five Rules for the Evolution of Cooperation. Science. https://doi.org/10.112
6/science.1133755

Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. Cam-
bridge university press.

Ostrom, E., Dietz, T., Dolšak, N., Stern, P. C., Stonich, S., & Weber, E. U. (Eds.). (2002). The
drama of the commons. National Academies Press. http://www.nap.edu/catalog/10287

Page, S. E. (2018). The model thinker: What you need to know to make data work for you. Basic
Books.

Polasky, S., Carpenter, S. R., Folke, C., & Keeler, B. (2011). Decision-making under great uncertainty:
Environmental management in an era of global change. Trends in Ecology & Evolution, 26(8), 398–
404. https://doi.org/10.1016/j.tree.2011.04.007

Raworth, K. (2017). Doughnut economics: Seven ways to think like a 21st-century economist. Chelsea
Green Publishing.

Reyers, B., Moore, M.-L., Haider, L. J., & Schlüter, M. (2022). The contributions of resilience to
reshaping sustainable development. Nature Sustainability, 1–8. https://doi.org/10.1038/s41893-
022-00889-6

Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., & Schellnhuber, H. J. (2017).
A roadmap for rapid decarbonization. Science. https://doi.org/10.1126/science.aah3443

Sayama, H. (2023). Introduction to the Modeling and Analysis of Complex Systems. https://math.lib
retexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introd
uction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in
ecosystems. Nature, 413(6856), 591–596. https://doi.org/10.1038/35098000

Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cárdenas, J. C., Crépin, A.-S., Janssen,
M. A., Norberg, J., & Schlüter, M. (2019). A more dynamic understanding of human behaviour
for the Anthropocene. Nature Sustainability, 2(12), 1075–1082.

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., McAllister,
R. R. J., Müller, B., Orach, K., Schwarz, N., & Wijermans, N. (2017). A framework for mapping
and comparing behavioural theories in models of social-ecological systems. Ecological Economics,

258

https://doi.org/10.1073/pnas.092080099
https://doi.org/10.1111/2041-210X.12082
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.ecolecon.2014.02.014
https://doi.org/10.1016/j.gloenvcha.2020.102085
https://doi.org/10.1016/j.gloenvcha.2020.102085
https://doi.org/10.5194/npg-24-113-2017
https://doi.org/10.1126/science.1133755
https://doi.org/10.1126/science.1133755
http://www.nap.edu/catalog/10287
https://doi.org/10.1016/j.tree.2011.04.007
https://doi.org/10.1038/s41893-022-00889-6
https://doi.org/10.1038/s41893-022-00889-6
https://doi.org/10.1126/science.aah3443
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
https://doi.org/10.1038/35098000


131, 21–35. https://doi.org/10.1016/j.ecolecon.2016.08.008
Schultz, W., Stauffer, W. R., & Lak, A. (2017). The phasic dopamine signal maturing: From reward

via behavioural activation to formal economic utility. Current Opinion in Neurobiology, 43, 139–
148. https://doi.org/10.1016/j.conb.2017.03.013

Smaldino, P. E. (2017). Models Are Stupid, and We Need More of Them. In R. R. Vallacher, S. J.
Read, & A. Nowak (Eds.), Computational Social Psychology (1st ed., pp. 311–331). Routledge.
https://doi.org/10.4324/9781315173726-14

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the
Anthropocene: The Great Acceleration. The Anthropocene Review, 2(1), 81–98. https://doi.org/
10.1177/2053019614564785

Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes,
C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer,
M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the
Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https:
//doi.org/10.1073/pnas.1810141115

Sterman, J. D., & Sweeney, L. B. (2007). Understanding public complacency about climate change:
Adults’ mental models of climate change violate conservation of matter. Climatic Change, 80(3),
213–238. https://doi.org/10.1007/s10584-006-9107-5

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second edition). The
MIT Press.

Williams, B. K. (2009). Markov decision processes in natural resources management: Observability
and uncertainty. Ecological Modelling, 220(6), 830–840. https://doi.org/10.1016/j.ecolmodel.2008
.12.023

259

https://doi.org/10.1016/j.ecolecon.2016.08.008
https://doi.org/10.1016/j.conb.2017.03.013
https://doi.org/10.4324/9781315173726-14
https://doi.org/10.1177/2053019614564785
https://doi.org/10.1177/2053019614564785
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1007/s10584-006-9107-5
https://doi.org/10.1016/j.ecolmodel.2008.12.023
https://doi.org/10.1016/j.ecolmodel.2008.12.023


Part IV

Exercises
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Ex | Introduction to Python

This exercises serves as a basic introduction to Python for Scientific Computing.

As with any language, you must speak it to learn it. This holds true for Python as well. In
the following, we will cover the basics of Python to get us started 1. But expect to keep learning
ways to express your ideas in Python.

Set up

This text is written in a computer file called Jupyter Notebook, typically with the extension .ipynb.
Jupyter is an interactive platform where you can write code and text and make visualizations. To run
the notebook, i.e., to execute the Python code inside, you need to connect the notebook to a so-called
Python kernel or runtime. There are two options: you run the kernel locally on your computer or in
the cloud on the internet.

Cloud-based runtime

The easiest way to run a Jupyter Notebook is to use Google Colab, which requires a Google account.
The advantage is that you don’t need to worry about installing anything on your machine — other
notable cloud options include binder, which is, however, more cumbersome to set up. At Uni Bonn,
there is also the option to launch a Jupyter lab via ecampus.

Local runtime

The alternative to an internet-based execution of the Python code inside a Jupyter Notebook is
to install Python locally on your machine. I recommend doing so. If you are new to Python, we
recommend downloading the Anaconda installer and following the installation instructions. Once
installed, we’ll use the Jupyter Notebook or Jupyter Lab interface to write code.

Exercise �

Execute the following code cell:

print("Hello, World!")

Hello, World!

1See also 1 Introduction to Python and Jupyter Notebooks and 01.01-Getting-Started-with-Python-and-Jupyter-
Notebooks, which served as valuable sources for this tutorial.
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Note that within a Jupyter Notebook, you don’t need the print function if you simply want to see
the output of a cell’s last line.

"Hello Jupyter"

'Hello Jupyter'

The print function is useful for viewing the output of multiple lines.

print("Hello Alice?")
print("Hello Bob")

Hello Alice?
Hello Bob

"Hello Alice?"
"Hello Bob"

'Hello Bob'

Getting help

A convenient way to get help on almost anything in Python is to add a ? behind the Python object.
Try it with the print function in the cell below.

# ...

Also, be not afraid of Python errors. They often give you handy tips on how to resolve a problem.

Pro tip. Familiarize yourself with the keyboard shortcuts for a more convenient notebook experience,
e.g., execute a code cell and advance by pressing Shift+Enter, use a for inserting a code cell above,
b for below, dd for deleting a cell, z for undoing your last move, Enter for entering into a cell, Esc for
leaving a cell, m for changing a cell to a Markdown cell, and y for changing it back to a code cell.

Basics

Everything in Python is an object. Every number, string, data structure, function, class, module,
etc., exists in the Python interpreter as a Python object. An object may have attributes and methods
associated with it. For example, let us define a variable that stores an string:

var = "Alice"

Exercise �

A convenient way to see which methods and attributes are associated with an object is to use tab
completion. Write var. and press TAB in the cell below.
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# ...

Transform the text in the variable var to uppercase. Use tab-completion to find the appropriate
method.

# ...

Comments

In Python code cells, comments begin with #. They serve to clarify your code. Nonetheless, it’s best
not to use them excessively. Your code should ideally be clear and comprehensible on its own, without
the need for excessive comments.

� Exercise Write a comment in the cell below.

# ...

Variables

A variable is created as soon as a value is assigned to it. We don’t have to define the type of the
variable explicitly, as we do in other programming languages, because Python can automatically guess
the type of data entered (dynamically typed). For example,

x = 5
y = 3.14
name = "Alice"
is_student = True

You can assign values to several variables simultaneously by using commas to separate the variable
names and their corresponding values.

color1, color2, color3 = "red", "green", "blue"

You can assign the same value to several variables by chaining multiple assignment operations in one
statement.

color4 = color5 = color6 = "magenta"

Any data or information stored within a Python variable has a type.

Exercise �

View the data type stored within each variable form above using the type function.
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# ...

Rules for variable name

Variable names can be short (a, x, y, etc.) or descriptive (my_favorite_color, profit_margin,
the_3_musketeers, etc.). However, I recommend using descriptive variable names to make it easier
to understand the code.

The rules below must be followed while naming Python variables: * A variable’s name must start with
a letter or the underscore character _. It cannot begin with a number. * A variable name can only
contain lowercase (small) or uppercase (capital) letters, digits, or underscores (a-z, A-Z, 0-9, and _).
* Variable names are case-sensitive, i.e., a_variable, A_Variable, and A_VARIABLE are all different
variables.

DeepDive | Call by Reference

Python employs a mechanism called Call by Object Reference. When an object is assigned to a variable
name, the variable acts as a reference to that object. For instance, consider the following assignment:

x = [5, 3]

Here, the variable name x points to the memory location of the object [5, 3]. Now, if we assign x to
a new variable y:

y = x

In this case, the variable y now also points to the same object [5, 3]. This means the object [5, 3]
is not duplicated in a different memory location for y. To illustrate this, let’s add an element to y:

y.append(4)
y

[5, 3, 4]

x

[5, 3, 4]

When we modified y, it is important to note that x also updated to the same object. This demonstrates
that x and y refer to the same object rather than independent copies.

Basic Operations

Python includes fundamental arithmetic operations by default. Below are a few examples. Specifically,
the ** operator is used for exponentiation.
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a = 12
b = 2

print(a + b)
print(a - b)
print(a * b)
print(a / b)
print(a ** b)
print(a % b) # modulo operator

14
10
24
6.0
144
0

Data structures

Python includes various built-in containers or data structures 2 for data storage.

Lists

A list is a sequence of Python objects with two key characteristics

1. the number of objects is variable, i.e., objects can be added or removed from a list, and
2. the objects are mutable, i.e., they can be changed.

Lists can be defined as a sequence of Python objects separated by commas and enclosed in square
brackets []. For example, below is a list consisting of three integers.

list_example = [4,7,3,5,7,1,5,87,5]

We can check the data type of a Python object using the in-built function type(). Let us check the
data type of the object list_example.

type(list_example)

list

Indexing Indexing means accessing the elements of a list by their respective position. Indexing in
lists includes both

• positive indexing (starting from 0 for the first element) and
• negative indexing (starting from -1 for the last element).

For example,

2see 2 Data structures – Introduction to Data Science with Python for a more detailed exposition.
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list_example[0]

4

list_example[-1]

5

Slicing a list List slicing is a technique in Python that allows you to extract a portion of a list by
specifying a range of indices. It creates a new list containing the elements from the original list within
that specified range. List slicing uses the colon : operator to indicate the start, stop, and step
values for the slice. The general syntax is:

new_list = original_list[start:stop:step]

Here’s what each part of the slice means:

• start: The index at which the slice begins (inclusive). If omitted, it starts from the beginning
(index 0).

• stop: The index at which the slice ends (exclusive). If omitted, it goes until the end of the list.
• step: The interval between elements in the slice. If omitted, it defaults to 1.

Exercise �. Try it out.

# ...

Adding and removing elements in a list For removing an element from the list, the pop and remove
methods may be used. The pop method removes an element at a particular index, while the remove
method removes the element’s first occurrence in the list by its value.

Exercise �. Try it out.

# ...

List comprehensions List comprehensions offer a clear and concise method to generate new lists by
applying an expression to each element in an iterable (such as a list or range) and can filter items
based on a specified condition. The fundamental syntax for a list comprehension is as follows:

new_list = [expression for item in iterable if condition]

• expression: This is the expression that is applied to each item in the iterable. It defines what
will be included in the new list.

• item: This is a variable that represents each element in the iterable as the comprehension iterates
through it.

• iterable: This is the source from which the elements are taken. It can be any iterable, such as
a list, range, or other iterable objects.
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• condition (optional): This filter can be applied to control which items from the iterable are
included in the new list. If omitted, all items from the iterable are included.

For example, to create a list of even numbers from 1 to 20, we can write

[x for x in range(1, 21) if x % 2 == 0]

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Exercise �. Use a list comprehension to create a list that has squares of natural numbers from 5 to
15.

# ...

Tuples

A tuple is a sequence of Python objects with two key characteristics:

1. the number of objects is fixed, and
2. the objects are immutable, i.e., cannot be changed.

A tuple can be defined as a sequence of Python objects separated by commas and enclosed in rounded
brackets (). For example, below is a tuple containing three integers.

tuple_example = (2,7,4)

We can check the data type of a Python object using the in-built function type(). Let us check the
data type of the object tuple_example.

type(tuple_example)

tuple

Tupe indexing is identical to list indexing.

Tuples can be concatenated using the + operator to produce a longer tuple:

(2,7,4) + ("another", "tuple") + ("mixed","datatypes",5)

(2, 7, 4, 'another', 'tuple', 'mixed', 'datatypes', 5)

If tuples are assigned to an expression containing multiple variables, the tuple will be unpacked, and
each variable will be assigned a value in the order in which it appears. See the example below.

x,y,z = (4.5, "this is a string", (("Nested tuple",5)))
print(x)
print(y)
print(z)

4.5
this is a string
('Nested tuple', 5)
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Dictionaries

Unlike lists and tuples, a dictionary is an unordered collection of items. Each item stored in a
dictionary has a key and value. You can use a key to retrieve the corresponding value from the
dictionary. Dictionaries have the type dict.

Dictionaries are created by enclosing key-value pairs within braces or curly brackets { and }, colons
to separate keys and values, and commas to separate dictionary elements.

The dictionary keys and values are Python objects. While values can be any Python object, keys need
to be immutable Python objects, like strings, integers, tuples, etc. Thus, a list can be a value, but not
a key, as elements of a list can be changed.

dict_example = {'USA':'Joe Biden', 'India':'Narendra Modi', 'China':'Xi Jinping'}

Elements of a dictionary can be retrieved by using the corresponding key.

dict_example['India']

'Narendra Modi'

dict_example.keys()

Viewing keys and values

dict_keys(['USA', 'India', 'China'])

dict_example.values()

dict_values(['Joe Biden', 'Narendra Modi', 'Xi Jinping'])

dict_example.items()

dict_items([('USA', 'Joe Biden'), ('India', 'Narendra Modi'), ('China', 'Xi Jinping')])

Adding and removing elements in a dictionary New elements can be added to a dictionary by
defining a key in square brackets and assigning it to a value:

dict_example['Japan'] = 'Fumio Kishida'
dict_example['Countries'] = 4
dict_example

{'USA': 'Joe Biden',
'India': 'Narendra Modi',
'China': 'Xi Jinping',
'Japan': 'Fumio Kishida',
'Countries': 4}
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Elements can be removed from the dictionary using the del method or the pop method:

del dict_example['Countries']

dict_example

{'USA': 'Joe Biden',
'India': 'Narendra Modi',
'China': 'Xi Jinping',
'Japan': 'Fumio Kishida'}

dict_example.pop('USA')

'Joe Biden'

dict_example

{'India': 'Narendra Modi', 'China': 'Xi Jinping', 'Japan': 'Fumio Kishida'}

New elements can be added, and values of existing keys can be changed using the update method:

dict_example = {'USA':'Joe Biden', 'India':'Narendra Modi', 'China':'Xi
Jinping','Countries':3}↪

dict_example

{'USA': 'Joe Biden',
'India': 'Narendra Modi',
'China': 'Xi Jinping',
'Countries': 3}

dict_example.update({'Countries': dict_example['Countries']+1, 'Japan':'Fumio
Kishida'})↪

dict_example

{'USA': 'Joe Biden',
'India': 'Narendra Modi',
'China': 'Xi Jinping',
'Countries': 4,
'Japan': 'Fumio Kishida'}

Functions

If a piece of code or an algorithm is utilized multiple times within a program, it can be defined
separately as a function. Doing so improves both the code structure and clarity.

To create a new function, use the def keyword. For instance,
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def greet(name):
return f"Hello, {name}!"

Here, name is called an argument or parameter of the function.

Indentation: Python heavily utilizes indentation (white space preceding a statement) to establish
code structure. This feature enhances readability and comprehension of Python code. Improper
indentation can lead to issues. To indent your code, position the cursor at the beginning of the line
and press the Tab key once. Pressing Tab again will create an additional indent, while Shift+Tab will
decrease the indentation by one level.

greet("Alice")

'Hello, Alice!'

greet("Bob")

'Hello, Bob!'

Variable scope

When defining functions, understanding variable scope is crucial.

Local Variable. Variables declared within a function have a local scope, meaning they can only be
accessed inside that function. These are referred to as local variables.

Global Variable. Conversely, a variable declared outside of any function is called a global variable.
This means a global variable can be accessed both inside and outside the function.

Named and optional arguments

Calling a function with numerous arguments can be confusing and lead to mistakes. Python allows
the use of named arguments for improved clarity. Additionally, you have the option to distribute the
function call across several lines.

def create_profile(first_name, last_name,
age=None, email=None, phone=None, address=None, city=None,

state=None, zip_code=None,↪

country="Germany"):
"""
Creates a user profile with the given information. Some fields have default
values.↪

"""
print(f"First Name: {first_name}")
print(f"Last Name: {last_name}")
print(f"Age: {age}")
print(f"Email: {email}")
print(f"Phone: {phone}")
print(f"Address: {address}")
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print(f"City: {city}")
print(f"State: {state}")
print(f"Zip Code: {zip_code}")
print(f"Country: {country}")

Here, all arguments except for the first two are optional. You can invoke the function with or without
these arguments; if no arguments are provided, the default value will be applied. Functions that
include optional arguments provide greater flexibility in their usage.

user_profile = create_profile(
"Jane",
last_name="Doe",
email="jane.doe@example.com",
city="Bonn")

First Name: Jane
Last Name: Doe
Age: None
Email: jane.doe@example.com
Phone: None
Address: None
City: Bonn
State: None
Zip Code: None
Country: Germany

DeepDive | *args and **kwargs

Using special symbols, we can pass a variable number of arguments to a function. There are two
special symbols:

1. *args (Non-Keyword Arguments)
2. *kwargs (Keyword Arguments)

def myFun(name, *args, **kwargs):
print("Name:", name)
print("args: ", args)
print("kwargs: ", kwargs)

Now we can use both *args and **kwargs to pass arguments to this function

myFun('John',22,'cs',city="Bonn",age=22,major="cs")

Name: John
args: (22, 'cs')
kwargs: {'city': 'Bonn', 'age': 22, 'major': 'cs'}
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Control flow

Similar to other programming languages, Python includes built-in keywords that facilitate conditional
control flows in code.

Conditional statements

One of the most powerful features of programming languages is branching, which enables making
decisions and running alternative statements depending on whether specific conditions are true. In
Python, we can use the if, else, and elif (short for else if ) keywords. For example,

def what_is_x(x):
if x > 0:

print("x is positive")
elif x > -10:

print("x is negative")
else:

print("x is below -10")

what_is_x(x=-9)

x is negative

Iteration (Loops)

Another powerful feature of programming languages, closely associated with branching, is the ability
to repeatedly execute one or more statements. This capability is commonly known as iteration or
looping. There are two primary methods to achieve this in Python: for loops and while loops.

For loops A for loop is used for iterating or looping over sequences, i.e., lists, tuples, dictionaries,
strings, and ranges. For example,

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

for day in days:
print(day)

Monday
Tuesday
Wednesday
Thursday
Friday

The range function is used to create a sequence of numbers that can be iterated over using a for loop.
It can be used in 3 ways:

• range(n) - Creates a sequence of numbers from 0 to n-1
• range(a, b) - Creates a sequence of numbers from a to b-1
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• range(a, b, step) - Creates a sequence of numbers from a to b-1 with increments of step

Exercise �. Try it out.

# ...

Ranges are used for iterating over lists when you need to track the index of elements while iterating.

a_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

for i in range(len(a_list)):
print('The value at position {} is {}.'.format(i, a_list[i]))

The value at position 0 is Monday.
The value at position 1 is Tuesday.
The value at position 2 is Wednesday.
The value at position 3 is Thursday.
The value at position 4 is Friday.

Here, the format method of the string inserts its arguments at the positions where the {}s serve as a
placeholder.

Another way to achieve the same result is by using the enumerate function with a_list as an input,
which returns a tuple containing the index and the corresponding element.

for i, val in enumerate(a_list):
print('The value at position {} is {}.'.format(i, val))

The value at position 0 is Monday.
The value at position 1 is Tuesday.
The value at position 2 is Wednesday.
The value at position 3 is Thursday.
The value at position 4 is Friday.

While loops A while loop executes a block of code for as long as a condition is true. For example,
let’s try to calculate the factorial of 100 using a while loop. The factorial of a number n is the product
(multiplication) of all the numbers from 1 to n, i.e., 1*2*3*...*(n-2)*(n-1)*n.

result = 1; i = 1 # We can define multiple variables in one line by separating them
with a ;↪

while i <= 100:
result = result * i
i = i+1

'The factorial of 100 is: {}'.format(result)

'The factorial of 100 is: 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000'
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Be aware of infinite loops. Suppose the condition in a while loop always holds true. In that case,
Python repeatedly executes the code within the loop forever, and the execution of the code never
completes. This situation is called an infinite loop. It generally indicates that you’ve made a mistake
in your code. For example, you may have provided the wrong condition or forgotten to update a
variable within the loop, eventually falsifying the condition.

If your code is stuck in an infinite loop during execution, just press the “Stop” button on the toolbar
(next to “Run”) or select “Kernel > Interrupt” from the menu bar. This will interrupt the execution
of the code. The following two cells both lead to infinite loops and must be interrupted.

DeepDive | break and continue statement

These statements alter the flow of a loop.

We can use the break statement within the loop’s body to immediately stop the execution and break
out of the loop.

i = 1
result = 1

while i <= 100:
result *= i
if i == 42:

print('Magic number 42 reached! Stopping execution..')
break

i += 1

print('i:', i)
print('result:', result)

Magic number 42 reached! Stopping execution..
i: 42
result: 1405006117752879898543142606244511569936384000000000

With the continue statement, we break out of the current iteration and continue to the next one.

i = 1
result = 1

while i <= 10:
i += 1
if i % 2 == 0:

print('Skipping {}'.format(i))
continue

print('Multiplying with {}'.format(i))
result = result * i

print('i:', i)
print('result:', result)

Skipping 2
Multiplying with 3
Skipping 4
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Multiplying with 5
Skipping 6
Multiplying with 7
Skipping 8
Multiplying with 9
Skipping 10
Multiplying with 11
i: 11
result: 10395

Libraries

There are several built-in functions in Python like print(), abs(), max(), sum() etc., which do not
require importing any library. We can extend these functions by importing external libraries. Here,
we will cover some popular libraries for basic scientific computing.

NumPy

NumPy is a fundamental library for numerical computing in Python. It provides support for arrays,
matrices, and mathematical functions, making it essential for scientific and data analysis tasks. It is
mostly used for performing numerical operations and efficiently storing numerical data.

import numpy as np

vector = np.array([1, 2, 3])
matrix = np.array([[3, 1],

[0, 2]])
print(vector)
print(matrix)

[1 2 3]
[[3 1]
[0 2]]

SciPy

SciPy is used for performing scientific computing such as solving differential equations, optimization,
statistical tests, etc. In particular, its eigenvalue computation method seems to be more stable than
NumPy’s.

import scipy as sp
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Exercise �: Eigenvector and values

Use the scipy.linalg module to calculate the eigenvalues and eigenvectors of the matrix defined
above. If you need to refresh your knowledge about eigenvectors and eigenvalues, I recommend watch-
ing this video by 3Blue1Brown. Use your knowledge from above on how to get help inside a Python
Jupyter Notebook.

# ...

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, or interactive plots and visualiza-
tions. It is commonly used for data visualization and exploration.

import matplotlib.pyplot as plt

For example, we can create a scatter plot of 1000 random sample, generate from the numpy.random
module.

np.random.seed(42) # The seed makes the result reproducible
plt.scatter(np.random.randn(1000), np.random.randn(1000));

Sympy

SymPy is a Python library for symbolic mathematics, providing capabilities to perform algebraic
manipulations, solve equations, and work with calculus, among other mathematical tasks. It is a
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computer algebra system written in pure Python, designed to be easily extensible and to provide a
comprehensive set of tools for symbolic computation.

import sympy as sym

For example, we can calculate the eigenvectors and values from the matrix above also computer-
analytically

eigenvalues_and_vectors = sym.Matrix(matrix).eigenvects()

print("The eigenvalues are {} and {}".format(eigenvalues_and_vectors[0][0],
eigenvalues_and_vectors[1][0]))↪

print("The eigenvalues are {} and {}".format(eigenvalues_and_vectors[0][2][0],
eigenvalues_and_vectors[1][2][0]))↪

The eigenvalues are 2 and 3
The eigenvalues are Matrix([[-1], [1]]) and Matrix([[1], [0]])

Another use case is to differentiate a function using SymPy in Python using the diff function. Here’s
an example:

# Define the variable
x = sym.symbols('x')

# Define the function
f = x**3 + 2*x**2 + x + 1

# Differentiate the function with respect to x
sym.diff(f, x)

3𝑥2 + 4𝑥 + 1

Recap | Eigenvectors and eigenvalues

� DeepDive | Recap EEV

To represent a vector ( x ) using the eigenvectors of a matrix ( A ) as a basis, follow these steps:

1. Eigenvalue and Eigenvector Decomposition: If ( A ) is a square matrix, and it has a full set
of linearly independent eigenvectors, we can decompose it as: [ A = V �V^{-1} ] where: - ( V ) is
the matrix whose columns are the eigenvectors of ( A ), - ( �) is the diagonal matrix containing the
corresponding eigenvalues of ( A ), - ( V^{-1} ) is the inverse of ( V ) (assuming the eigenvectors are
linearly independent).

2. Using Eigenvectors as a Basis: The eigenvectors of ( A ) form a basis for the vector space. To
represent ( x ) in this new basis, express ( x ) as a linear combination of the eigenvectors of ( A ).

Let ( v_1, v_2, …, v_n ) be the eigenvectors of ( A ). You want to express: [ x = c_1 v_1 + c_2
v_2 + …+ c_n v_n ] where ( c_1, c_2, …, c_n ) are the scalar coefficients that correspond to the
projection of ( x ) onto each eigenvector ( v_i ).
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3. Find the Coefficients ( c ): If ( V ) is the matrix whose columns are the eigenvectors of ( A ),
then you can find the coefficients ( c ) by solving the following equation: [ x = V c ] where ( c = [c_1,
c_2, …, c_n]^T ).

To solve for ( c ), multiply both sides by ( V^{-1} ): [ c = V^{-1} x ] Thus, the coefficients ( c )
represent the vector ( x ) in the eigenvector basis.

4. Reconstructing ( x ) from the Eigenvector Basis: Once you have the coefficients ( c ), you can
reconstruct ( x ) as: [ x = V c ] where ( V ) is the matrix of eigenvectors and ( c ) is the vector of
coefficients.

Summary: To represent ( x ) in the eigenvector basis of ( A ): 1. Compute the matrix ( V ) of
eigenvectors of ( A ). 2. Find the coefficients ( c = V^{-1} x ). 3. ( x ) can then be written as ( x =
V c ), where ( c ) represents ( x ) in the eigenvector basis.

Exercise �: Sustainability Systems Science Generator

There are many word combinations in the literature that broadly refer to the kind of science we will
be exploring in this course. Take, for example, the word combination,

Coupled Social-Ecological Systems Modeling.

Your task is to write a Python function that randomly generates alternative names for this kind of
science. Tip: Start by considering alternatives for each part of the word combination above.

# ...

Saving notebooks

The easiest way to save a notebook as a PDF file for sharing is to print it via your browser’s print
dialogue.

278



Ex | Nonlinearity

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

In this exercise, we will investigate the questions when feedback and overshoot lead to prolonged
oscillations and when they do not.

Model 1 | Human-Nature interactions

In the lecture, we asked the question, whether the osscilations we observed in the interaction model
between human economic captial (𝑦) and natural capital (𝑥),

𝑥𝑡+1 = 𝑥𝑡 − 𝑎𝑦𝑡 (.14)
𝑦𝑡+1 = 𝑦𝑡 + 𝑏𝑥𝑡 (.15)

are due to a special set of parameters (𝑎 and 𝑏), or whether they are a general feature of the system’s
structure.

Figure 12: 02.01-EconomyNature.dio.png

Now, you will use Python’s sympy library to investigate this question. sympy is a powerful library
for symbolic mathematics. It allows you to define variables and equations symbolically, and then
solve these equations symbolically. This is very useful for investigating the properties of mathematical
models.

import sympy as sp

First, we define the symbols for the variables in the model:
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x, y, a, b = sp.symbols('x y a b')

Step 1: Coefficient matrix

Formulate a sympy.Matrix object A that represents the coefficient matrix of the system of equations,
x𝑡+1 = 𝐴x𝑡.

# ...

Step 2: Calculate the eigenvalues of the matrix A

Now, calculate the eigenvalues of the matrix A using the A.eigenvals() method.

# ...

Step 3: Interpret the results

What do the eigenvalues tell you about the stability of the system? Are the oscillations in the system
due to a special set of parameters, or are they a general feature of the system’s structure? Write your
answer in the markdown cell below.

…

As discussed in the lecture, the fact that economic and natural captial may enter negative values is
not very intuitive. Therefore, we will now refine the model, turning it into a model with nonlinear
changes.

Model 2 | Lotka-Volterra equations

During this part, you will use Python to implement and investigate the Lotka-Volterra equations, also
known as the predator-prey model. The predator-prey equations are an iconic model in population
ecology, which describe the dynamics of biological systems in which two species interact, one as a
predator and the other as prey. It is the foundation for many dynamic system models of human-
enviornment interactions, where human societies are the predators and the natural environment the
prey. The Easter Island model (Brander & Taylor, 1998) or the HANDY (human and nature dynamics)
model (Motesharrei et al., 2014) are prototypical examples of such models; (see also Section 2 of the
review by Farahbakhsh et al., 2022).

In discrete time, the Lotka-Volterra equations read

Δ𝑥 = 𝑥𝑡+1 − 𝑥𝑡 = 𝛼𝑥𝑡 − 𝛽𝑥𝑡𝑦𝑡 (.16)
Δ𝑦 = 𝑦𝑡+1 − 𝑦𝑡 = 𝛿𝑥𝑡𝑦𝑡 − 𝛾𝑦𝑡 (.17)

where, in our case, 𝑥 denotes the health of the natural environment and 𝑦 the level of development of
a human society. The parameters 𝛼, 𝛽, 𝛿, and 𝛾 are positive constants that determine the dynamics
of the system. The parameter 𝛼 represents the natural growth rate of the environment, 𝛽 the rate at
which the human society depletes the environment, 𝛿 the rate at which the human society grows by
exploiting the environment, and 𝛾 the natural decay rate of the human society.
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Model 2 | The Lotka-Volterra equations

You will use the following set of parameters as default values:

# Parameters
alpha = 0.1 # Growth rate of prey
beta = 0.02 # Rate at which predators destroy prey
gamma = 0.3 # Death rate of predators
delta = 0.01 # Rate at which predators increase by consuming prey

# Initial conditions
X = 40 # Initial prey population
Y = 9 # Initial predator population

Step 1 | Implement the model

Write a function called lotkavolterra that implements the update of the Lotka-Volterra equations.

# ...

Write (or copy-paste-and-adjust) an iterate_model function that iterates a dynamic systems model
forward in time, given an initial state and a function (plus its parameters) that updates the state.

# ...

Write (or copy-paste-and-adjust) a plot_stock_evolution function that plots the time series of
the state variables. Label the two-dimensional output of our system as “Natural environment” and
“Human society”.

# ...

Step 2 | Plot the time series

Visualize the time series of the natural environment and the human society for the default parameter
values for 100 time steps.

# ...

You should observe oscillations in the time series of the natural environment and the human society.
Crucially, natural environment and human socitey values (almost) never become negative.

Optional | Feel free to interact with the time series plot using the interact function.

# ...
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Step 3 | Visualize the dynamics in the phase space

Adjust the plot_flow function from the lecture material to visualize the dynamics of the system in
the phase space. The updated plot_flow function should take the following arguments (and default
values):

• update_func: the function that updates the state of the system
• xextent=10: the x-axis extent of the phase space plot
• yextent=10: the y-axis extent of the phase space plot
• nr_points=11: the number of points in the phase space plot
• ax=None: the axis object to plot on
• **update_params: additional keyword arguments for the update_func

# ...

Visualize the dynamics of the Lotka-Volterra equations in the phase space for the default parameter
values and an xextent of 70.

# ...

Now, adjust the plot_flow_trajectory function from the lecture material to visualize the trajectory
of the system in the phase space next to the time series plot. The updated plot_flow_trajectory
function should take the following arguments (and default values):

• nr_timesteps: the number of time steps to simulate
• initial_value: the initial value of the state variables
• update_func: the function that updates the state of the system
• xextent=10: the x-axis extent of the phase space plot
• yextent=10: the y-axis extent of the phase space plot
• nr_points=11: the number of points in the phase space plot
• **update_params: additional keyword arguments for the update_func

# ...

Visualize a trajectory from the initial values (𝑥0 = 28, 𝑦0 = 5) of the system in the phase space next
to the time series plot for the default parameter values and 250 time steps. The xextent should be
70.

# ...

You should observe that the system diverges with ossiclations around an equilibrium point that are
more complex than simple sin and cosin fuctions.

Optional | Feel free to interact with plot using the interact function.

# ...

But where exactly are the equilibirum points of the system?
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Step 4 | Equilibrium points

Calculate the analytical solutions for the equilibrium points 𝑥𝑒 of the Lotka-Volterra system, i.e., how
𝑥𝑒 and 𝑦𝑒 depend on the parameters 𝛼, 𝛽, 𝛿, and 𝛾.
You can do this either by hand or using the sympy library.

# ...

You should have found two equilibrium points. Include both in the visualization of the phase space
trajectory from the initial values (𝑥0 = 28, 𝑦0 = 5) for the default parameter values and 250 time steps.
The xextent should be 70.

# ...

Step 5 | Derive the Jacobian matrix

The Jacobian matrix of the descrete-time system (x𝑡+1 = 𝐹(x𝑡)) is the multidimensional version of
the derivative. It is a matrix of all first-order partial derivatives of a vector-valued function. The
Jacobian matrix of a two-dimensional system is given by

𝐽 = [
𝜕𝐹𝑥
𝜕𝑥

𝜕𝐹𝑥
𝜕𝑦

𝜕𝐹𝑦
𝜕𝑥

𝜕𝐹𝑦
𝜕𝑦

] , (.18)

where 𝐹𝑥 and 𝐹𝑦 are the two functions that describe the dynamics of the 𝑥 and 𝑦 component of the
system.

You can do this either by hand or using the sympy library.

…

𝐽 = [1 + 𝛼 − 𝛽𝑦 −𝛽𝑥
𝛿𝑦 1 + 𝛿𝑥 − 𝛾] . (.19)

Step 6 | Eigenvalues at the equilibrium points

Compute the eigenvalues of the Jacobian matrix at the two equilibrium points using the symbolic
mathematics library sympy.

# ...

Similarly as in the first model, you should observe that for positive parameter values, you always have
to take the square root of a negative number, leading to complex numbers which indicates that the
system oscillates around the equilibrium points.

In the basic Lotka-Volterra model, the natural environment would grow indefinitely without human
society, which is not very realistic. Therefore, we will now refine the model, make the growth of the
natural environment logistic.
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Model 3 | Extended Lotka-Volterra model

We extent the Lotka-Volerra model such that the natural environment has a finite carrying capacity
𝐶 and its natural growth follows the logistic map,

Δ𝑥 = 𝑥𝑡+1 − 𝑥𝑡 = 𝛼𝑥𝑡(1 − 𝑥𝑡
𝐶 ) − 𝛽𝑥𝑡𝑦𝑡, (.20)

Δ𝑦 = 𝑦𝑡+1 − 𝑦𝑡 = 𝛿𝑥𝑡𝑦𝑡 − 𝛾𝑦𝑡. (.21)

All other parameters remain the same.

Step 1 | Implement the model

Write a function called lotkavolterraX that implements the update of the extended Lotka-Volterra
equations.

# ...

Step 2 | Visualize the dynamics in the phase space

For the default parameters and a carrying capacity of 𝐶 = 40, visualize a trajectory of the dynamics of
the extended Lotka-Volterra equations in the phase space, using the plot_flow_trajectory function
from above. The initial values should be 𝑥0 = 40 and 𝑦0 = 0.001, representing a natural environment
in equilibirum and a human society that is just starting to grow. Simulate the system for 250 time
steps. Set the xextent to 50, and the yextent to 3.

# ...

Briefly describe and interpret the dynamics you observe in the markdown cell below.

…

Last, plot the evolution of the human society trajectory alone. What do you observe?

# ...

Optional step | Eigenvalues at the equilibrium points

Use sympy to calculate the eigenvalues at the equilibirum points. What do they tell about the stability
of the system?

# ...
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Ex | Tipping elements

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

Robustness of the tipping elements model

In this exercise, we will investigate the robustness of the tipping elements model. We will do this
changing the functional forms of the reinforcing and balancing feedback loops.

Figure 13: 02.02-TippingModel.dio.png

Δ𝑥 = (𝑥3 − 𝑎𝑥5 + 𝑐)1
𝜏 ,

where, as in the model of the lecture, 𝜏 represents the typical time scale of the system, and thus,
inverse strength of the system’s change, and 𝑎 is a parameter that determines the strength of the
balancing feedback loop in relation to the reinforcing feedback loop (with unit stength). Compare this
form with the one in the lecture. What is the difference?

Step 1 | Time evolution

Implement the update_function for this new model in Python.

# ...

Showcae the bistability of this model by plotting the time evoltion of the system state for different
initial conditions.
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# ...

Visualize the same inital conditions in a cobweb plot.

# ...

Step 2 | Bifurcation analysis

Conduct a bifurcation analysis accodring to the one in the lecture, including the calculation and
plotting of the equilibirum points and their stability.

# ...

…

# ...

Step 3 | Potential function

Derive and plot the potential function for this model

# ...

…

# ...

Step 4 | Conclusion

Briefly summarize what your findings mean for the robustness of the tipping elements model.

…

The subcritical pitchfork bifurcation

Bifurcation theory orders different kinds of bifurcations. A so-called subcritical pitchfork bifur-
cation is defined as one where an unstable equilibrium point split into three, two unstable and one
stable. Its difference equation (in normal form) is given by

Δ𝑥 = 𝑥3 − 𝑐𝑥,

where 𝑐 is a parameter that controls the system’s stability and 𝑥 is the system state.

Your task is to implement this model and conduct a bifurcation analysis. We will also use
this model in the next lecture.
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Step 1 | Stability analysis

Find the critical thresholds of the parameter 𝑐 at which bifurcations occur and study the stability of
each equilibrium point in dependence of the parameter value.

# ...

…

# ...

Step 2 | Bifurcation diagramm

Draw an analytical bifurcation diagram of this model for −1 < 𝑐 < 2, showing the equilibrium points
and their stability.

# ...

Now, you should be able to observe why this bifurcation is called a pitchfork bifurcation.

Step 3 | Potential function

Derive and plot the potential function for this model. Also include the equilibirum points and their
stability.

# ...

Another kind of bifurcation in the logistic map

In this exercise we will investigate another kind of bifurcation in the logistic map. Let’s revisit the
logistic map in the form,

𝑥𝑡+1 = 𝑐𝑥𝑡(1 − 𝑥𝑡),
where 𝑐 > 0.

Step 1 | Stability analysis

Find the critical thresholds of the parameter 𝑐 at which bifurcations occur and study the stability of
each equilibrium point in dependence of the parameter value.

# ...

…

# ...
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Step 2 | Simulations

Simulate the model with several selected values of to confirm the results of analysis.

# ...

…

# ...

Step 3 | Bifurcation diagramm

Draw (simulate) a bifurcation diagram of this model for 0 < 𝑐 < 4.

# ...

Step 4 | Sensitivity to initial conditions

Draw two trajectories from almost the same but a different initial condition for a paramter value
3.7 < 𝑐 < 4.0. Draw the two trajectories ontop of each other with different color and linestyle.

# ...

You should see that the trajectories diverge after a while. This is called sensitive dependence on
initial conditions, a key property of so-called chaotic systems.
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Ex | Resilience

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

import matplotlib.style as style; style.use('seaborn-v0_8')
plt.rcParams['figure.figsize'] = (7.8, 2.5)
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0] # get the first color

of the default color cycle↪

plt.rcParams['axes.facecolor'] = 'white'; plt.rcParams['grid.color'] = 'gray';
plt.rcParams['grid.linewidth'] = 0.25;↪

The resilience phenomena we discussed are very generic. They don’t depend on the exact formulation
of the equation. These exercises will show that this claim is not entirely wrong.

Discontinous systems

In this note, we used the classical dynamcial systems from bifurcation theory which are all continuous,
meaning that we can write their functional form as one continuous mathematical equation.

The pictorial resilience models often portray a simple cup, such as this,

def G(x, a): return np.where(np.abs(x)<a, a/2*x**2, None)

def plot_potential(a=1.0):
xs=np.linspace(-2,2,301)
plt.plot(xs, G(xs, a), color='blue')
plt.ylim(-0.1, 1.1); plt.xlim(-2, 2)

interact(plot_potential, a=(0, 2., 0.01),);

interactive(children=(FloatSlider(value=1.0, description='a', max=2.0, step=0.01), Output()), _dom_classes=('w…

Let’s interpret this cup function as a quasi-potential for the following difference equation,

𝑥𝑡+1 =
⎧{
⎨{⎩

𝑥𝑡 − 𝑑𝐺
𝑑𝑥 (𝑥𝑡) + 𝑏𝑛𝑡 = 𝑥𝑡 − 𝑎𝑥𝑡 + 𝑏𝑛𝑡 if − 𝑎 ≤ 𝑥 ≤ 𝑎,

−10 if 𝑥 < −𝑎
+10 if 𝑥 > 𝑎.
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def F(x, a, b):
if x<-a:

return -10.0
elif x>a:

return 10.0
else:

return x - a*x + b*np.random.randn()

Showcase robustness resilience with this system

# ...

Showcase adaptation resilience with this system

# ...

Showcase the critical slowing with this system

# ...

Heavy tailed shocks

So far, we assumed the unpredictable and external shocks are distributed according to a normal
distribution with mean zero.

Real-world shocks may not exhibit this property. They often come with so-called heavy tails, meaning
that large shocks are more probable compared to a normal distribution.

The Student’s t-distribution (or simply the t-distribution) is a continuous probability distribution that
generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-
shaped. The t-distribution has one more parameter than the normal distribution, called the degrees
of freedom, df.

• When df→ ∞, the t-distribution becomes the normal distribution.
• When df= 1, the t-distribution becomes the so-called Cauchy distribution.

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import t, norm, cauchy

x = np.linspace(-5, 5, 100)
degrees_of_freedom = [1, 2, 5, 100] # Varying degrees of freedom

# Plotting T-distribution curves for different degrees of freedom
for df in degrees_of_freedom:
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y = t.pdf(x, df) # Using default location and scale parameters (0 and 1)
plt.plot(x, y, label=f"Degrees of Freedom = {df}")

z = norm.pdf(x)
plt.plot(x, z, 'k--', label='Normal')
z = cauchy.pdf(x)
plt.plot(x, z, 'k:', label='Cauchy')

plt.xlabel('x'); plt.ylabel('PDF'); plt.legend();
plt.title('T-Distribution with Varying Degrees of Freedom');

Investigate the impact of heavy-tailed shocks on resilience.

Tip: Define a difference equation with t-distributed shocks and a degree-of-freedom parameter to
control the shocks’ heavy-tailedness.

# ...

Autocorrelation with heavy-tailed shocks

Investigate how shocks’ heavy-tailedness impacts the lag-1 temporal autocorrelation early-warning
indicator.

# ..
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Ex | State transitions

In this exercise, you will apply the compentencies shown in the lecture to a Markov chain with 3 states
as shown below.

Figure 14: 02.04-ExcerciseExample.dio.png

This model extents the example shown in the lecture between a prosperous and a degraded environ-
mental state by adding a third state. The previous prosperous state is now split into two states: a risky
state with a collapse probability 𝑝𝑐 to move to the degarded state from which the system transitions
back to the risky state with recovery probability 𝑝𝑟, as before.

Now the risky state has also a transformation probability 𝑝𝑡 to transform the system into a sustainable
state. Think of a combination of technological innovation and policy changes that allow the system to
transition to a sustainable state. However, due to rebound effects, there is also a overusage probability
𝑝𝑜 that the system transitions back to the risky state.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Step 1 | Transition matrix

Set up the transition matrix using the variable with the following default values,

pc = 0.005 # collapse probability
pr = 0.001 # recovery probability
pt = 0.05 # transformation probability
po = 0.01 # overusage probability (relapse to prosperous state)

Tip: Self-transitions are not shown in the diagram, but they are possible.
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# T = ...

Make sure and show below that the rows of the transition matrix sum up to 1, as required for a
probabilistic transition matrix of a Markov chain.

# ...

Step 2 | Simulation

Compare the time-evolution of an ensemble stochastic runs with the time-evolution of the state dis-
tribution.

Step 2.1 | Stochastic run

First, simulate a stochastic run of the system for 100 time steps with the risky state as the initial
state.

# ...

Visulaize the results in a plot.

# ...

Step 2.2 | Ensemble

Second, create an ensemble of 300 stochastic runs of the system for 100 time steps with the risky state
as the initial state.

# ...

Make sure that your variable, into which you stored the runs of the ensemble, is a two-dimensional
numpy array with shape (300, 100).

# ..

Step 2.3 | Visualize the ensemble

Visualize each of the 300 trajectories in a time series plot by looping through the trajectories of the
ensemble and plotting them in the same plot with a low alpha value (plt.plot(..., alpha=0.05))
to make the individual trajectories visible.

# ...
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You should realize, that we cannot visulaize the average of the ensemble in a single line plot, as we
did in the lecture, because the state space has three states.

Takeing the average of the numerical values representing the states does not make sense in this case.
For example, if the risky state is represented by the number 1, the sustainable state by the number 0,
and the degraded state by the number 2, the average of the ensemble could not distinguish between
all probability in the risky state and 50% in the sustainable and degraded state.

But we still can visualize the evolution of the distribution of the ensemble at each time step.

To do so, we need to transform our ensemble of 300 stochastic runs into a distribution of the ensemble
at each time step. We can do so by counting the number of state visits in the ensemble at each time
step. The numpy.histogram function can help us with this task. Suppose that the ensemble is stored
in the variable ensemble with shape (300, 100). Then, the following code snippet will count the
number of visits of each state in the ensemble at the first time step:

stochastic_evolution = np.array([np.histogram(samp, bins=3, range=(0,2))[0] for samp
in ensemble.T])↪

The loop through ensemble.T iterates through each time step. The np.histogram function counts the
number of visits of each state in the ensemble at each time step. The bins=3 argument specifies that we
have three states, and the range=(0,2) argument specifies that the states’ numerical representations
are in the range from 0 to 2. The [0] at the end of the list comprehension extracts the counts of the
states from the histogram function.

Apply this code snippet to the ensemble and make sure that the variable stochastic_evolution has
the shape (100, 3).

# ...

Finally, visualize the state distribution over time using the plt.imshow function. The x-axis should
represent the time steps, and the y-axis should represent the states. The color intensity should
represent the number of visits of each state at each time step. A code like this should do the job:

plt.imshow(stochastic_evolution.T, aspect='auto', interpolation='None')

# ...

Step 2.4 | State distribution evolution

To compare this result to the time evolution of the state distribution, you first need to compute the
latter.

# ..

Check that the sum of your state distribution evolution at each time step is equal to 1.

# ..

Finally, visualize the state distribution evolution over time using the plt.imshow function as above.
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# ...

You should observe that both plot look similar, but the state distribution evolution is smoother than
the ensemble plot. This is because the ensemble plot results from the individual trajectories, while
the state distribution evolution plot shows the average of the ensemble at each time step.

Step 3 | Stationary distribution

Compute the stationary distribution of the system by computing the eigenvector of the transition
matrix corresponding to the eigenvalue 1, first numerically and then analytically.

Step 3.1 | Numerical solution

Use the numpy.linal.eig method to compute the stationary distribution of the system. Make sure
to normalize the correct eigenvector to sum up to 1, as it represents a probability distribution.

# ...

How does the result compare to the time-evolution above?

Does the system reach the stationary distribution at the end?

If not, what does that say about the time evolution simulations above?
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…

Step 3.1 | Symbolic solution

Construct the transition matrix symbolically using the sympy package and compute the stationary
distribution of the system analytically.

# ...

Interpret your result
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Ex | Sequential Decisions

The Markov Decision Process below illustrates the tension between opting for a cautious policy, a
short-term risky policy, and a sustainable transformation policy with potential overuse and rebound
effects.

The environments consists of three states, 𝒮 = {s, r, d}, a sustainable, a risky, and a degraded state.

In each state, the agent has three actions to choose from, 𝒜 = {l, t, h}, a low-intensity action toward
the environment, a transformation action, and a high-instensity action toward the environment.

Immediate rewards 𝑟 and transition probabilities 𝑝 are written on the transition arrows as 𝑝|𝑟.

Figure 15: 03.01-ExcerciseExample.dio.png

The low-intensity action at the risky state guarantees to stay in the risky environment but
requires a reduction of immediate welfare (low-intensity reward 𝑟𝑙 < high-intensity reward 𝑟ℎ).

High immediate welfare (𝑟ℎ) via the high-intensity action at the risky state comes at the cost of
over-using Nature, which may tip into a degraded state (with collapse probability 𝑝𝑐), where only a
low-intensity course of action may recover Nature eventually (with recovery probability 𝑝𝑟).

Whenever the degraded state is involved, the agent only receives the lowest degradation reward
𝑟𝑑.

An alternative to the cautious low-intensity action at the risky state is the transformation action,
where eventually high levels of sustainable wellbeing 𝑟𝑠 > 𝑟ℎ can be achieved (after the transition to
the sustainable state with transition probability 𝑝𝑡).

However, the transition to the sustainable state requires investment into the transformation technology
and thus lower immediate wellbeing during the transition (transition reward 𝑟𝑡 < 𝑟𝑙).

It also may not guarantee to stay within the risky state and may cause Nature to degrade (with
probability 𝑝𝑑).

Rebound effects. At the sustainable state, however, there is the risk of overusing the transformation
technology (if another action than the low-intensity is taken) since this yields the highest overuse
reward 𝑟𝑜, which risks (with probability 𝑝𝑜) the relapse back into the risky environmental state.
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import numpy as np
import matplotlib.pyplot as plt

Step 1 | Transition and rewards tensors

Transform the description of the MDP into two Python functions that can be called with the model
parameters and return a transition and reward tensor, respectively. Make sure to write these functions
to be used both with numpy and sympy.

# ...

Test that both functions work and check that the transition tensors are proper probability distributions
for three exemplary parameter combinations.

# ...

Step 2 | State values

Write a Python function to numerically compute the MDP’s state values, given a policy_Xsa, a
transitions_Tsas tensor, a rewards_Rsas tensor, and a discount factor dcf.

# ...

Test that your function works with some arbitrary values for the policy_Xsa, transitions_Tsas
tensor, rewards_Rsas tensors, and discount factor dcf.

# ...

Step 3 | Policies

Formulate four different policies and represent them in Python:

The cautious policy always chooses the low-intensity action.

# ...

The risky policy chooses the high-intensity action in the risky and sustainable state and the low-
intensity action in the degraded state.

# ...

The transformation policy chooses the transformation action in the risky state and the low-intensity
action in the sustainable and degraded state.
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# ...

The overuse policy chooses the transformation action in the risky and sustainable state and the
low-intensity action in the degraded state.

# ...

Step 4 | Optimal policy

What are the state values of the risky state for all the four policies at the parameter combination
𝑝𝑐 = 0.2, 𝑝𝑟 = 0.01, 𝑝𝑡 = 0.04, 𝑝𝑑 = 0.005, 𝑝𝑜 = 0.02, 𝛾 = 0.98, 𝑟𝑜 = 1.2, 𝑟𝑠 = 1.0, 𝑟ℎ = 0.9, 𝑟𝑙 = 0.7,
𝑟𝑡 = 0.65, 𝑟𝑑 = 0.0?

pc = 0.2; pr = 0.01; pt = 0.04; pd = 0.005; po = 0.02;
ro = 1.2; rs = 1.0; rh = 0.9; rl = 0.7; rt = 0.65; rd = 0.0

# ...

Which is, therefore, the optimal policy for that parameter combination?

# ...

Step 5 | Optimal policies with uncertainty

Given the other above parameters, how does the optimal policy change with a varying discount factor
𝛾? Create a plot that shows the state values of the risky state for the four policies at 𝛾 ∈ [0.001, 0.9999]
and interpret your result.

# ...
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Ex | Strategic Interactions

This exercise will revisit the tragedy dilemma, agreements, and threshold public goods but use slightly
different modeling assumptions. Doing so will give us a more robust understanding of the strategic
interactions in multi-agent action situations.

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Step 1 | Tragedy Dilemma

Next to the model presented in the lecture, another common parametrization of the tragedy dilemma
is the following: Actors can either cooperate or defect. Each cooperator contributes 𝑐 > 0 to the
public good at an individual cost of 𝑐. The sum of all contributions is multiplied by a synergy factor
𝑟 and then equally distributed among all actors. The payoff functions are given by:

𝑅𝑐 = 𝑟𝑐(𝑁𝑐 + 1)
𝑁 − 𝑐, (.22)

𝑅𝑑 = 𝑟𝑐𝑁𝑐
𝑁 , (.23)

with 𝑁𝑐 being the number of other actors cooperating and 𝑁 being the total number of actors.

Step 1.1 | Visualization

Plot the payoff functions for cooperators and defectors as a function of 𝑁𝑐 for different values of 𝑟.
Compare the results to the tragedy dilemma model presented in the lecture.

# ...

Step 1.2 | Conditions

Give the conditions the parameters must hold for this model to be a tragedy dilemma.

# ...
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Step 2 | Agreements

Apply the reasoning from the lecture to compute how the critical participation levels depend on the
parameters of the model 𝑟, 𝑐, and 𝑁 .

# ...

Step 3 | Threshold Public Goods

Let us now consider a variant of threshold public good, where the catastrophic impact 𝑚 occurs
probabilistically, and each polluting actor increases the probability of collapse. We assume that if all
actors pollute, there is a probability 𝑞𝑐 of collapse; if all actors cooperate, there is zero probability of
collapse. The collapse probability increases linearly with the number of polluting actors 𝑁𝑝, i.e.,

𝑝𝑐 = 𝑞𝑐
𝑁𝑝
𝑁 .

Furthermore, we assume that if the collapse occurs, the actors won’t receive the payoffs from the
public. The payoff functions are given by:

𝑅𝑎(𝑁𝑎; 𝑟, 𝑐, 𝑞𝑐, 𝑚, 𝑁) = (1 − 𝑞𝑐𝑁p/𝑁) ⋅ (𝑟𝑐(𝑁a + 1)/𝑁 − 𝑐) + 𝑞𝑐𝑁p/𝑁 ⋅ 𝑚, (.24)
𝑅𝑝(𝑁𝑎; 𝑟, 𝑐, 𝑞𝑐, 𝑚, 𝑁) = (1 − 𝑞𝑐(𝑁p + 1)/𝑁) ⋅ (𝑟𝑐𝑁a)/𝑁) + 𝑞𝑐(𝑁p + 1)/𝑁 ⋅ 𝑚, (.25)

where 𝑁𝑎 is the number of other actors abating and 𝑁𝑝 is the number of other actors polluting. Thus,
it must hold that the total number of actors 𝑁 = 𝑁𝑎+𝑁𝑝+1. Furthermore, 𝑟 is the synergy factor, 𝑐 is
the cost of cooperation, 𝑞𝑐 is the probability of collapse if all actors pollute, and 𝑚 is the catastrophic
impact.

Step 3.1 | Visualization

Plot the payoff functions for abating and polluting actors as a function of 𝑁𝑎 for 𝑓 = 4, 𝑐 = 5,
𝑚 = −5 𝑞𝑐 = 0.4, and 𝑁 = 5. Compare the results to the threshold public goods model presented in
the lecture.

# ...

Step 3.1 | Conditions

Calculate the three critical conditions for this game of

1) Dilemma, i.e., the actors are indifferent between all abating and all polluting,
2) Greed, i.e., the actors are indifferent between abating and polluting, give all others abate, and
3) Fear, i.e., the actors are indifferent between abating and polluting, given all others pollute.

Solve the conditions for the collapse impact 𝑚.

You may do this by hand or by using the sympy library. I recommend the latter.
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# ...

Visualize the critical conditions for the collapse impact 𝑚 as a function of 𝑞𝑐 for 𝑟 = 1.2, 𝑐 = 5, and
𝑁 = 2. Interpret the results briefly.

# ...

Visualize the critical conditions for the collapse impact 𝑚 as a function of 𝑁 ∈ [2, 3, … , 15] for 𝑟 = 3,
𝑐 = 5, and 𝑞𝑐 = 0.5. Interpret the results briefly.

# ...
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Ex | Dynamic Interactions

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

In the chapter on dynamic interactions, we saw how being embedded in the same environment could
resolve the tragedy into a comedy of the commons. In this exercise, you will investigate the ecological
micro-foundations of social dilemma traps. That is when there is no game to begin with in the
short term; what kind of incentive regimes can emerge when the agents are embedded in the same
environment? The model is very similar to the one presented in the chapter, and a detailed analysis
can be found in (Barfuss, Donges, et al., 2024).

Figure 16: 03.03-EcologicalMicroFoundation.dio.png

Model description

Two representative decision-makers repeatedly interact (in discrete time) within an environment of
two states, a prosperous and a degraded one. In the prosperous state, each agent can choose between a
conservation and an intensification action, which affects the environment. For example, intensification
corresponds to emitting a large, business-as-usual amount of carbon into the atmosphere, a high
rate of rainforest deforestation, or a high level of freshwater extraction. In contrast, conservation
corresponds to a significantly reduced amount of greenhouse gas emissions, rate of deforestation, or
level of fresh-water extraction within the recovery capacity of the environment.
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Provisioning goods and immediate benefits. In a prosperous environment, the biosphere’s main-
tenance and regulating services function sufficiently well, and the environment can deliver provisioning
goods to the agents. We assume these goods are entirely private, i.e., their benefits do not depend on
the other agent’s action. Each agent opting for conservation receives a benefit 𝑏C. Each agent opting
for intensification receives a higher benefit 𝑏I > 𝑏C. In the degraded state, however, the biosphere’s
maintenance and regulating services are not functioning. Thus, whenever the environment collapses
into or is in the degraded state, all agents receive only a benefit 𝑏D < 𝑏C independent of their action.

To reduce the number of free model parameters, we summarize these three benefits into a single
relative benefit ratio, Δ𝑟 = 𝑓(𝑏C) ∈ [0, 1] by transforming all benefit parameters according to 𝑓(𝑥) =
(𝑥 − 𝑏D)/(𝑏I − 𝑏D). Δ𝑟 describes how much less immediate benefit conservation delivers (in relation
to the collapse impact 𝑏D) compared to intensification. Thus, a larger Δ𝑟 denotes either a larger
conservation benefit, a smaller, more severe degradation benefit, or a smaller intensification benefit.

Ecological tipping and transitions. However, each agent employing intensification also increases
the probability of triggering the tipping element and collapsing the environment into the degraded
state. We parameterize the overall collapse probability 𝑝𝑐 by the collapse leverage 𝑞𝑐 ∈ [0, 1) each
intensification actor exerts on the environment. The total collapse probability 𝑝𝑐 = 0, if no actor
chooses intensification, 𝑝𝑐 = 𝑞𝑐/2 if one actor chooses intensification, and 𝑝𝑐 = 𝑞𝑐 if both do. In the
degraded state, the agents cannot influence the environment and have to wait on average for 1/𝑝𝑟
rounds, parameterized by the recovery probability 𝑝𝑟, until they enter the prosperous state again.

Decision model. We assume that each agent’s conservation or intensification strategy is conditional
solely on the current environmental state. They do not take longer histories, their own past choices,
nor the choices of the other agent into account - either because they do not have the cognitive resources
for more complex strategies or because they cannot observe or make sense of the other agent’s actions.
But we assume that agents can plan their course of action into the future and that they care for future
rewards but exponentially discount them with their discount factor 𝛾 ∈ [0, 1).
Note that all direct social interaction in the model is deliberately stripped away. The agents’ choices do
not influence the immediate benefit of the other agent. Agents are self-interested and do not consider
the other agent’s actions for their strategy. Social interaction is only mediated indirectly through the
environment. This is not to say that such direct social interaction does not exist.

Our model aims to isolate the cooperation-promoting effects of the actors’ shared ecological embedded-
ness. There is already good evidence for the beneficial effect of direct social interaction on collective
action (Nowak, 2006; Ostrom, 1990). We aim to assess the prospects for collective cooperation when
such mechanisms cannot work, either because of the anonymity or the scale of the problem.

In summary, our theoretical model is determined by only four parameters, two ecological and two
social ones: the collapse leverage 𝑞𝑐, the recover probability 𝑝𝑟, the discount factor 𝛾, and the relative
benefit ratio Δ𝑟. All of them are in the range between 0 and 1.

Task

Visualize the critical curves where the social dilemma incentive regimes change - solving for the discount
factor 𝛾 as a function of the collapse leverage 𝑞𝑐 (assuming agents with identical parameters). The
other two parameters are Δ𝑟 = 0.5 and 𝑝𝑟 = 0.1. Briefly interpret your plot.

# ...
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Ex | Behavioral Agency

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

Schelling’s segregation model demonstrates how individual preferences can lead to racial segregation,
even when people are comfortable in mixed neighborhoods. In this exercise, you will explore how the
model’s outcome depends on some of its parameters. You will investigate what it takes to achieve a
well-mixed society.

Task 1 | Implement Schelling’s model

Define a Python function run_model(agents) that simulates Schelling’s model for a given iterable
of agents (agents), the number of agents regarded as neighbors num_neighbors and the number
of neighbors required to be of the same type require_same_type such that an agent is happy. The
function should return an iterable of agents after the model has converged. The model should run until
no agent wants to move anymore. Print out the current cycle number while the model is running.

# ...

Task 2 | Run the model

Test your implementation by running the model with 500 agents, 10 neighbors, and 5 neighbors of the
same type required. Initialize the agents with 250 agents of type 0 and 250 agents of type 1. Plot the
distribution of agents at the beginning, and the end of the model run in a matplotlib figure with two
axes next to each other.

# ...

Task 3 | Performance metric

Having a visual understanding of the model’s behavior is essential. However, it is also useful to have
a quantitative measure of the model’s performance. Define a Python function homogeneity(agents,
num_neighbors) that returns the average homogeneity of the agents. The homogeneity of an agent
is the fraction of its neighbors that are of the same type. The average homogeneity is the average of
the homogeneity of all agents.
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# ...

Test your implementation by calculating the homogeneity of the initial and final agent distributions
from the simulation above.

# ...

Convince yourself that the homogeneity is a useful measure of the model’s performance by repeating
the simulation with the same parameters as above, except the number of neighbors required to be
happy is set to 9. Visualize and calculate the homogeneity of the final agent distribution.

# ...

Task 4 | Sensitivity analysis

Perform a simulation to investigate how the final homogeneity depends on the number of neighbors
considered, num_neighbors, and the number of neighbors of the same type required to be happy,
require_same_type.

First, we keep the number of neighbors required to be happy fixed to be exactly half the number of
neighbors considered. How sensitive is the final homogeneity to the number of neighbors considered?
Run the model for num_neighbors in the range from 2 to 20 in increments of two. As the simulation is
stochastic, run each simulation precisely five times. Plot the final homogeneities (plus their averages)
versus the number of neighbors considered. Briefly interpret your result.

# ...

Finally, run the model for num_neighbors in the range from 2 to 14, and for each num_enighbors,
the require_same_type from 1 to num_neighbors-1. Plot the final homogeneity as a heatmap.

Tip: Store the final homogeneities in a two-dimensional NumPy array

final_homogeneities=np.NaN * np.ones((15, 15)),

where the first dimension corresponds to the number of neighbors considered and the second dimension
to the number of neighbors of the same type required to be happy. The np.NaN values will be useful for
plotting the heatmap as the plotting functions ignore the ‘NaN’ values. You can you use the imshow
function from matplotlib to plot the heatmap,

plt.imshow(final_homogeneities, cmap='RdBu', vmin=0, vmax=1.0, origin='lower').

Include a color bar and a line indicating where the number of neighbors considered is equal to half
the number of neighbors of the same type required to be happy.

Interpret your results regarding the maximum number of neighbors required to be happy to achieve
a well-mixed society. What happens to the final homogeneity when the number of neighbors required
to be happy exceeds half the number of neighbors considered?

# ...
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Ex | Individual Learning

import numpy as np
import sympy as sp
import pandas as pd
import matplotlib.pyplot as plt
from copy import deepcopy

Task 1 | Learning the risky policy

In the lecture, we explored how the agent learns a cautious policy within the risk-reward dilemma.
Investigate the learning process for parameter combinations that make the risky policy optimal
(DiscountFactor=0.6, CollapseProbability=0.1, RecoveryProbability=0.1, SafeReward=0.5,
RiskyReward=1.0, DegradedReward=0.0). What parameters of the learning process, such as learning
rate and choice intensity, allow the agent to consistently learn the risky policy?

# ...

How does the learning process change if you change the transition probabilities to CollapseProbability=0.05,
RecoveryProbability=0.005?

# ...

Task 2 | Ecological public good

Implement the ecological public good from Lecture 03.03 as a reinforcement learning environment.
Ensure your EcologicalPublicGood class inherits from the base Environment class.

# ...

Let two agents learn in it and visualize the learning process.

# ...

Briefly discuss your findings.
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Ex | Learning Dynamics

import numpy as np
import matplotlib.pyplot as plt

Task 1 | Social dilemma flows

Visualize the flow plots for all four social dilemma environment we discussed in the course: Tragedy
Prinsoner’s Dilemma, Divergence Chicken, Coordination Stag Hunt, and Comedy Harmony.

You can use the pyCRLD environment SocialDilemma by impporting

from pyCRLD.Environments.SocialDilemma import SocialDilemma

# ...

Task 2 | Critical transition

We consider the following model: Two agents can either cooperate or defect. A cooperator contributes
a benefit 𝑏, which all agents receive. However, a cooperator must pay 𝑐 for the contribution. A defector
does not contribute and does not pay a cost. Thus, the payoff matrix is

Cooperate Defect
Cooperate 2𝑏 − 𝑐 , 2𝑏 − 𝑐 𝑏 − 𝑐, 𝑏
Defect 𝑏, 𝑏 − 𝑐 0, 0

Let us re-normalize the payoffs, devide all payoffs by 𝑏 and express in the cost-to-benefit ratio 𝑟 =
𝑐/𝑏.

Cooperate Defect
Cooperate 2 − 𝑟 , 2 − 𝑟 1 − 𝑟, 1
Defect 1, 1 − 𝑟 0, 0

Simulate the reinforcement learning dynamics in the game from 25 random initial joint policies for
values of 𝑟 in the range [0.5, 1.5]. Record the final joint policy for each initial policy and plot the critical
transition from defection to cooperation as a function of 𝑟. Also, visualize how long, on average, it
takes for the agents to reach the final joint policy. Show a critical slowing down.
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