9 References
Arthur, W. B. (1994). Inductive reasoning and bounded rationality.
The American Economic Review, 84(2), 406–411.
Arthur, W. B. (2014). Complexity and the Economy.
Oxford University Press.
Axelrod, R. (1984). The Evolution Of Cooperation.
Basic Books.
Axelrod, R., & Hamilton, W. D. (1981). The Evolution of
Cooperation. Science, 211(4489),
1390–1396. https://doi.org/10.1126/science.7466396
Barfuss, W. (2020). Reinforcement Learning Dynamics in the
Infinite Memory Limit. Proceedings of the 19th
International Conference on Autonomous Agents
and MultiAgent Systems, 1768–1770.
Barfuss, W. (2022). Dynamical systems as a level of cognitive analysis
of multi-agent learning. Neural Computing and Applications,
34(3), 1653–1671. https://doi.org/10.1007/s00521-021-06117-0
Barfuss, W., Donges, J. F., & Kurths, J. (2019). Deterministic limit
of temporal difference reinforcement learning for stochastic games.
Physical Review E, 99(4), 043305. https://doi.org/10.1103/PhysRevE.99.043305
Barfuss, W., Donges, J. F., Vasconcelos, V. V., Kurths, J., & Levin,
S. A. (2020). Caring for the future can turn tragedy into comedy for
long-term collective action under risk of collapse. Proceedings of
the National Academy of Sciences, 117(23), 12915–12922. https://doi.org/10.1073/pnas.1916545117
Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray,
S., Olsson, C., Pachocki, J., Petrov, M., Pinto, H. P. d. O., Raiman,
J., Salimans, T., Schlatter, J., … Zhang, S. (2019). Dota 2 with
Large Scale Deep Reinforcement Learning
(arXiv:1912.06680). arXiv. https://doi.org/10.48550/arXiv.1912.06680
Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale,
M., & Walczak, A. M. (2012). Statistical mechanics for natural
flocks of birds. Proceedings of the National Academy of
Sciences, 109(13), 4786–4791. https://doi.org/10.1073/pnas.1118633109
Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., &
Kurth-Nelson, Z. (2020). Deep Reinforcement Learning and
Its Neuroscientific Implications. Neuron,
107(4), 603–616. https://doi.org/10.1016/j.neuron.2020.06.014
Brush, E. R., Krakauer, D. C., & Flack, J. C. (2018). Conflicts of
interest improve collective computation of adaptive social structures.
Science Advances, 4(1), e1603311. https://doi.org/10.1126/sciadv.1603311
Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The
free energy principle for action and perception: A
mathematical review. Journal of Mathematical Psychology,
81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004
Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E.,
Miller, E. R., & Simpson, S. J. (2006). From Disorder
to Order in Marching Locusts.
Science, 312(5778), 1402–1406. https://doi.org/10.1126/science.1125142
Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple
learning. Psychological Review, 58, 313–323. https://doi.org/10.1037/h0054388
Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2), 156–172.
Camerer, C. F. (2011). Behavioral game theory:
Experiments in strategic interaction. Princeton
university press.
Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S., Abbeel, P.,
& Dragan, A. (2019). On the utility of learning about humans for
human-ai coordination. Advances in Neural Information Processing
Systems, 32.
Christoffersen, P. J., Haupt, A. A., & Hadfield-Menell, D. (2022).
Get it in writing: Formal contracts mitigate social dilemmas in
multi-agent RL. arXiv Preprint arXiv:2208.10469.
Cohen, J. E. (1998). Cooperation and self-interest: Pareto-inefficiency of Nash
equilibria in finite random games. Proceedings of the National
Academy of Sciences, 95(17), 9724–9731. https://doi.org/10.1073/pnas.95.17.9724
Cross, J. G. (1973). A Stochastic Learning Model of
Economic Behavior*. The Quarterly Journal of
Economics, 87(2), 239–266. https://doi.org/10.2307/1882186
Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K., &
Graepel, T. (2021). Cooperative AI: Machines must learn to
find common ground. Nature, 593(7857), 33–36. https://doi.org/10.1038/d41586-021-01170-0
Daniels, B. C., Ellison, C. J., Krakauer, D. C., & Flack, J. C.
(2016). Quantifying collectivity. Current Opinion in
Neurobiology, 37, 106–113. https://doi.org/10.1016/j.conb.2016.01.012
Daniels, B. C., Krakauer, D. C., & Flack, J. C. (2017). Control of
finite critical behaviour in a small-scale social system. Nature
Communications, 8(1), 14301. https://doi.org/10.1038/ncomms14301
Daniels, B. C., Laubichler, M. D., & Flack, J. C. (2021).
Introduction to the special issue: Quantifying collectivity. Theory
in Biosciences, 140(4), 321–323. https://doi.org/10.1007/s12064-021-00358-2
Darriba, Á., & Waszak, F. (2018). Predictions through evidence
accumulation over time. Scientific Reports, 8(1), 494.
https://doi.org/10.1038/s41598-017-18802-z
Dawes, R. M. (1980). Social Dilemmas. Annual Review of
Psychology, 31(1), 169–193. https://doi.org/10.1146/annurev.ps.31.020180.001125
Dayan, P., & Niv, Y. (2008). Reinforcement learning: The
Good, The Bad and The Ugly. Current
Opinion in Neurobiology, 18(2), 185–196. https://doi.org/10.1016/j.conb.2008.08.003
De Marzo, G., Gabrielli, A., Zaccaria, A., & Pietronero, L. (2022).
Quantifying the unexpected: A scientific approach to
Black Swans. Physical Review
Research, 4(3), 033079. https://doi.org/10.1103/PhysRevResearch.4.033079
DeDeo, S., Krakauer, D. C., & Flack, J. C. (2010). Inductive game
theory and the dynamics of animal conflict. PLoS Computational
Biology, 6(5), e1000782.
Epstein, J. M., & Axtell, R. L. (1996). Growing
Artificial Societies: Social
Science From the Bottom
Up (First Edition). Brookings Institution Press.
Erev, I., & Roth, A. E. (1998). Predicting How People Play
Games: Reinforcement Learning in Experimental
Games with Unique, Mixed Strategy
Equilibria. The American Economic Review,
88(4), 848–881.
(FAIR)†, M. F. A. R. D. T., Bakhtin, A., Brown, N., Dinan, E., Farina,
G., Flaherty, C., Fried, D., Goff, A., Gray, J., Hu, H., et al. (2022).
Human-level play in the game of diplomacy by combining language models
with strategic reasoning. Science, 378(6624),
1067–1074.
Fehr, E., & Gächter, S. (2000). Cooperation and
Punishment in Public Goods Experiments.
American Economic Review, 90(4), 980–994. https://doi.org/10.1257/aer.90.4.980
Flack, J. C. (2017). Coarse-graining as a downward causation mechanism.
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 375(2109), 20160338. https://doi.org/10.1098/rsta.2016.0338
Foerster, J., Assael, I. A., de Freitas, N., & Whiteson, S. (2016).
Learning to Communicate with Deep Multi-Agent
Reinforcement Learning. Advances in Neural Information
Processing Systems, 29.
Franci, A., Golubitsky, M., Stewart, I., Bizyaeva, A., & Leonard, N.
E. (2022). Breaking indecision in multi-agent, multi-option dynamics.
arXiv Preprint arXiv:2206.14893.
Friston, K. (2018). Does predictive coding have a future? Nature
Neuroscience, 21(8), 1019–1021. https://doi.org/10.1038/s41593-018-0200-7
Fudenberg, D., & Levine, D. K. (1998). The Theory
of Learning in Games (K. Binmore, Ed.).
MIT Press.
Grupen, N., Jaques, N., Kim, B., & Omidshafiei, S. (2022).
Concept-based understanding of emergent multi-agent behavior. Deep
Reinforcement Learning Workshop NeurIPS 2022. https://openreview.net/forum?id=zt5JpGQ8WhH
Gunawardena, J. (2022). Learning Outside the
Brain: Integrating Cognitive Science and
Systems Biology. Proceedings of the IEEE, 1–23. https://doi.org/10.1109/JPROC.2022.3162791
Hauert, C. (2002). Effects of space in 2 2 games. International
Journal of Bifurcation and Chaos, 12(07), 1531–1548. https://doi.org/10.1142/S0218127402005273
Hauert, C., & Doebeli, M. (2004). Spatial structure often inhibits
the evolution of cooperation in the snowdrift game. Nature,
428(6983), 643–646. https://doi.org/10.1038/nature02360
Hauert, C., Michor, F., Nowak, M. A., & Doebeli, M. (2006). Synergy
and discounting of cooperation in social dilemmas. Journal of
Theoretical Biology, 239(2), 195–202. https://doi.org/10.1016/j.jtbi.2005.08.040
Hauser, O. P., Hilbe, C., Chatterjee, K., & Nowak, M. A. (2019).
Social dilemmas among unequals. Nature, 572(7770),
524–527.
Heins, C., Millidge, B., Costa, L. da, Mann, R., Friston, K., &
Couzin, I. (2023). Collective behavior from surprise
minimization. arXiv. http://arxiv.org/abs/2307.14804
Hernandez-Leal, P., Kartal, B., & Taylor, M. E. (2019). A survey and
critique of multiagent deep reinforcement learning. Autonomous
Agents and Multi-Agent Systems, 33(6), 750–797. https://doi.org/10.1007/s10458-019-09421-1
Hilbe, C., Chatterjee, K., & Nowak, M. A. (2018). Partners and rivals in direct reciprocity.
Nature Human Behaviour. https://doi.org/10.1038/s41562-018-0320-9
Hilbe, C., Šimsa, Š., Chatterjee, K., & Nowak, M. A. (2018).
Evolution of cooperation in stochastic games. Nature,
559(7713), 246–249. https://doi.org/10.1038/s41586-018-0277-x
Hofbauer, J., & Sigmund, K. (1998). Evolutionary
Games and Population Dynamics (First).
Cambridge University Press. https://doi.org/10.1017/CBO9781139173179
Hofbauer, J., & Sigmund, K. (2003). Evolutionary game dynamics.
Bulletin of the American Mathematical Society, 40(4),
479–519. https://doi.org/10.1090/S0273-0979-03-00988-1
Holland, J. H., & Miller, J. H. (1991). Artificial Adaptive
Agents in Economic Theory. The American Economic
Review, 81(2), 365–370.
Hughes, E., Anthony, T. W., Eccles, T., Leibo, J. Z., Balduzzi, D.,
& Bachrach, Y. (2020). Learning to Resolve Alliance
Dilemmas in Many-Player Zero-Sum Games. New
Zealand, 10.
Jaynes, E. T., & Bretthorst, G. L. (2003). Probability theory:
The logic of science. Cambridge University Press. http://www5.unitn.it/Biblioteca/it/Web/LibriElettroniciDettaglio/50847
Jhawar, J., Morris, R. G., Amith-Kumar, U. R., Danny Raj, M., Rogers,
T., Rajendran, H., & Guttal, V. (2020). Noise-induced schooling of
fish. Nature Physics, 16(4), 488–493. https://doi.org/10.1038/s41567-020-0787-y
Kempes, C. P., Wolpert, D., Cohen, Z., & Pérez-Mercader, J. (2017).
The thermodynamic efficiency of computations made in cells across the
range of life. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
375(2109), 20160343. https://doi.org/10.1098/rsta.2016.0343
Kleshnina, M., Hilbe, C., Šimsa, Š., Chatterjee, K., & Nowak, M. A.
(2023). The effect of environmental information on evolution of
cooperation in stochastic games. Nature Communications,
14(1), 4153. https://doi.org/10.1038/s41467-023-39625-9
Krakauer, D. C., Flack, J. C., Dedeo, S., Farmer, D., & Rockmore, D.
(2010). Intelligent Data Analysis of
Intelligent Systems. In P. R. Cohen, N. M.
Adams, & M. R. Berthold (Eds.), Advances in
Intelligent Data Analysis
IX (pp. 8–17). Springer. https://doi.org/10.1007/978-3-642-13062-5_3
Krakauer, D., Bertschinger, N., Olbrich, E., Flack, J. C., & Ay, N.
(2020). The information theory of individuality. Theory in
Biosciences, 139(2), 209–223. https://doi.org/10.1007/s12064-020-00313-7
Leibo, J. Z., Dueñez-Guzman, E. A., Vezhnevets, A., Agapiou, J. P.,
Sunehag, P., Koster, R., Matyas, J., Beattie, C., Mordatch, I., &
Graepel, T. (2021). Scalable evaluation of multi-agent reinforcement
learning with melting pot. International Conference on Machine
Learning, 6187–6199.
Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., & Graepel, T.
(2017). Multi-agent Reinforcement Learning in
Sequential Social Dilemmas. Proceedings of the 16th
Conference on Autonomous Agents and
MultiAgent Systems, 464–473.
Leonardos, S., & Piliouras, G. (2021).
Exploration-Exploitation in
Multi-Agent Learning:
Catastrophe Theory Meets
Game Theory. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(13),
11263–11271. https://doi.org/10.1609/aaai.v35i13.17343
Levin, S. (2002). Complex adaptive systems: Exploring the
known, the unknown and the unknowable. Bulletin of the American
Mathematical Society, 40(1), 3–19. https://doi.org/10.1090/S0273-0979-02-00965-5
Littman, M. L. (1994). Markov games as a framework for multi-agent
reinforcement learning. In W. W. Cohen & H. Hirsh (Eds.),
Machine Learning Proceedings 1994 (pp. 157–163).
Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-335-6.50027-1
Lovering, C., Forde, J., Konidaris, G., Pavlick, E., & Littman, M.
(2022). Evaluation beyond task performance: Analyzing concepts in
AlphaZero in hex. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, & A. Oh (Eds.), Advances in neural information processing
systems (Vol. 35, pp. 25992–26006). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/a705747417d32ebf1916169e1a442274-Paper-Conference.pdf
Lupu, A., & Precup, D. (2020). Gifting in multi-agent reinforcement
learning. Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems, 789–797.
Marden, J. R., & Shamma, J. S. (2018). Game theory and control.
Annual Review of Control, Robotics, and Autonomous Systems,
1, 105–134.
McAvoy, A., Mori, Y., & Plotkin, J. B. (2022). Selfish optimization
and collective learning in populations. Physica D: Nonlinear
Phenomena, 439, 133426. https://doi.org/10.1016/j.physd.2022.133426
McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A., Wattenberg, M.,
Hassabis, D., Kim, B., Paquet, U., & Kramnik, V. (2022). Acquisition
of chess knowledge in AlphaZero.
Proceedings of the National Academy of Sciences,
119(47), e2206625119.
McNamara, J. M. (2013). Towards a richer evolutionary game theory.
Journal of The Royal Society Interface, 10(88),
20130544. https://doi.org/10.1098/rsif.2013.0544
McNamara, J. M., Houston, A. I., & Leimar, O. (2021). Learning,
exploitation and bias in games. PLOS ONE, 16(2),
e0246588. https://doi.org/10.1371/journal.pone.0246588
Mora, T., & Bialek, W. (2011). Are Biological
Systems Poised at Criticality?
Journal of Statistical Physics, 144(2), 268–302. https://doi.org/10.1007/s10955-011-0229-4
Newman, M. E. J. (2003). The Structure and
Function of Complex Networks.
SIAM Review, 45(2), 167–256. https://doi.org/10.1137/S003614450342480
Nowak, M. A. (2006). Evolutionary dynamics: Exploring the equations
of life. Harvard university press.
Ostrom, E., Walker, J., & Gardner, R. (1992). Covenants with and
without a Sword: Self-Governance Is Possible.
American Political Science Review, 86(2), 404–417. https://doi.org/10.2307/1964229
Park, S., Bizyaeva, A., Kawakatsu, M., Franci, A., & Leonard, N. E.
(2021). Tuning cooperative behavior in games with nonlinear opinion
dynamics. IEEE Control Systems Letters, 6, 2030–2035.
Poundstone, W. (2011). Prisoner’s Dilemma.
Knopf Doubleday Publishing Group.
Press, W. H., & Dyson, F. J. (2012). Iterated prisoner’s dilemma
contains strategies that dominate any evolutionary opponent.
Proceedings of the National Academy of Sciences,
109(26), 10409–10413. https://doi.org/10.1073/pnas.1206569109
Ramos-Fernandez, G., Smith Aguilar, S. E., Krakauer, D. C., & Flack,
J. C. (2020). Collective Computation in Animal
Fission-Fusion Dynamics.
Frontiers in Robotics and AI, 7. https://www.frontiersin.org/article/10.3389/frobt.2020.00090
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the
visual cortex: A functional interpretation of some extra-classical
receptive-field effects. Nature Neuroscience, 2(1),
79–87. https://doi.org/10.1038/4580
Rosas, F. E., Mediano, P. A. M., Gastpar, M., & Jensen, H. J.
(2019). Quantifying high-order interdependencies via multivariate
extensions of the mutual information. Physical Review E,
100(3), 032305. https://doi.org/10.1103/PhysRevE.100.032305
Roth, A. E., & Erev, I. (1995). Learning in extensive-form games:
Experimental data and simple dynamic models in the
intermediate term. Games and Economic Behavior, 8(1),
164–212. https://doi.org/10.1016/S0899-8256(05)80020-X
Sarfati, R., Hayes, J. C., & Peleg, O. (2021). Self-organization in
natural swarms of Photinus carolinus synchronous fireflies.
Science Advances, 7(28), eabg9259. https://doi.org/10.1126/sciadv.abg9259
Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural
Substrate of Prediction and Reward.
Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593
Schultz, W., Stauffer, W. R., & Lak, A. (2017). The phasic dopamine
signal maturing: From reward via behavioural activation to formal
economic utility. Current Opinion in Neurobiology, 43,
139–148. https://doi.org/10.1016/j.conb.2017.03.013
Shoham, Y., Powers, R., & Grenager, T. (2007). If multi-agent
learning is the answer, what is the question? Artificial
Intelligence, 171(7), 365–377. https://doi.org/10.1016/j.artint.2006.02.006
Sigmund, K. (2010). The Calculus of
Selfishness. In The Calculus of
Selfishness. Princeton University Press.
https://doi.org/10.1515/9781400832255
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
& Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature,
529(7587), 484–489. https://doi.org/10.1038/nature16961
Skyrms, B. (2004). The Stag Hunt and the
Evolution of Social Structure.
Cambridge University Press.
Stone, P., Kaminka, G., Kraus, S., & Rosenschein, J. (2010). Ad hoc
autonomous agent teams: Collaboration without pre-coordination.
Proceedings of the AAAI Conference on Artificial Intelligence,
24, 1504–1509.
Strouse, D., McKee, K. R., Botvinick, M. M., Hughes, E., & Everett,
R. (2021). Collaborating with humans without human data. CoRR,
abs/2110.08176. https://arxiv.org/abs/2110.08176
Sugden, R. (2004). The Economics of
Rights, Co-operation and
Welfare. Springer.
Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3(1), 9–44. https://doi.org/10.1007/BF00115009
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An
introduction (Second edition). The MIT Press.
Team, C. G. I., Bhoopchand, A., Brownfield, B., Collister, A., Lago, A.
D., Edwards, A., Everett, R., Frechette, A., Oliveira, Y. G., Hughes,
E., Mathewson, K. W., Mendolicchio, P., Pawar, J., Pislar, M., Platonov,
A., Senter, E., Singh, S., Zacherl, A., & Zhang, L. M. (2022).
Learning robust real-time cultural transmission without human
data. https://arxiv.org/abs/2203.00715
Tekin, E., Savage, V. M., & Yeh, P. J. (2017). Measuring
higher-order drug interactions: A review of recent
approaches. Current Opinion in Systems Biology, 4,
16–23. https://doi.org/10.1016/j.coisb.2017.05.015
Tekin, E., Yeh, P. J., & Savage, V. M. (2018). General
Form for Interaction Measures and
Framework for Deriving
Higher-Order Emergent
Effects. Frontiers in Ecology and Evolution,
6. https://www.frontiersin.org/articles/10.3389/fevo.2018.00166
Tuyls, K., Perolat, J., Lanctot, M., Hughes, E., Everett, R., Leibo, J.
Z., Szepesvári, C., & Graepel, T. (2019). Bounds and dynamics for
empirical game theoretic analysis. Autonomous Agents and Multi-Agent
Systems, 34(1), 7. https://doi.org/10.1007/s10458-019-09432-y
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J.,
Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T.,
Agapiou, J. P., Jaderberg, M., … Silver, D. (2019). Grandmaster level in
StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782), 350–354. https://doi.org/10.1038/s41586-019-1724-z
Wang, W. Z., Beliaev, M., Bıyık, E., Lazar, D. A., Pedarsani, R., &
Sadigh, D. (2021). Emergent Prosociality in
Multi-Agent Games Through Gifting. Twenty-Ninth
International Joint Conference on Artificial
Intelligence, 1, 434–442. https://doi.org/10.24963/ijcai.2021/61
Wang, X., & Fu, F. (2020). Eco-evolutionary dynamics with
environmental feedback: Cooperation in a changing world.
Europhysics Letters, 132(1), 10001. https://doi.org/10.1209/0295-5075/132/10001
Wolfram, S. (1994). Cellular Automata And
Complexity: Collected Papers
(1st edition). Westview Press.
Wolpert, D. H. (2006). Information Theory - The
Bridge Connecting Bounded Rational Game Theory and
Statistical Physics. In D. Braha, A. A. Minai, & Y.
Bar-Yam (Eds.), Complex Engineered Systems:
Science Meets Technology (pp. 262–290).
Springer. https://doi.org/10.1007/3-540-32834-3_12
Wolpert, D. H., Harré, M., Olbrich, E., Bertschinger, N., & Jost, J.
(2012). Hysteresis effects of changing the parameters of noncooperative
games. Physical Review E, 85(3), 036102. https://doi.org/10.1103/PhysRevE.85.036102
Zinkevich, M., Greenwald, A., & Littman, M. (2005). Cyclic
Equilibria in Markov Games.
Advances in Neural Information
Processing Systems, 18. https://proceedings.neurips.cc/paper/2005/hash/9752d873fa71c19dc602bf2a0696f9b5-Abstract.html